Hello,
I have data that was processed after normalization (with DESeq2). The data had contamination of melanoma cells so we subtracted the % of contamination of each sample from the counts of each gene.
What is the best way to continue the analysis with DESeq2 (DE analysis) using this data and not the raw data?
1- To round the values and use it as input to DESeq2
2- Reversing the values back to the raw data values (approximately) using the size factor.
3- Other options...
Thank you for your help,
Karen
Session info:
R version 3.3.2 (2016-10-31)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows >= 8 x64 (build 9200)
locale:
[1] LC_COLLATE=Hebrew_Israel.1255 LC_CTYPE=Hebrew_Israel.1255
[3] LC_MONETARY=Hebrew_Israel.1255 LC_NUMERIC=C
[5] LC_TIME=Hebrew_Israel.1255
attached base packages:
[1] parallel stats4 stats graphics grDevices utils datasets methods
[9] base
other attached packages:
[1] BiocInstaller_1.24.0 ggplot2_2.2.1 gplots_3.0.1
[4] RColorBrewer_1.1-2 DESeq2_1.14.1 SummarizedExperiment_1.4.0
[7] Biobase_2.34.0 GenomicRanges_1.26.4 GenomeInfoDb_1.10.3
[10] IRanges_2.8.2 S4Vectors_0.12.2 BiocGenerics_0.20.0
loaded via a namespace (and not attached):
[1] genefilter_1.56.0 gtools_3.5.0 locfit_1.5-9.1
[4] splines_3.3.2 lattice_0.20-34 colorspace_1.3-2
[7] htmltools_0.3.5 base64enc_0.1-3 survival_2.41-2
[10] XML_3.98-1.5 foreign_0.8-67 DBI_0.6
[13] BiocParallel_1.8.1 plyr_1.8.4 stringr_1.2.0
[16] zlibbioc_1.20.0 munsell_0.4.3 gtable_0.2.0
[19] caTools_1.17.1 htmlwidgets_0.8 memoise_1.0.0
[22] labeling_0.3 latticeExtra_0.6-28 knitr_1.15.1
[25] geneplotter_1.52.0 AnnotationDbi_1.36.2 htmlTable_1.9
[28] Rcpp_0.12.9 KernSmooth_2.23-15 acepack_1.4.1
[31] xtable_1.8-2 scales_0.4.1 backports_1.0.5
[34] checkmate_1.8.2 gdata_2.17.0 Hmisc_4.0-2
[37] annotate_1.52.1 XVector_0.14.1 gridExtra_2.2.1
[40] digest_0.6.12 stringi_1.1.2 grid_3.3.2
[43] tools_3.3.2 bitops_1.0-6 magrittr_1.5
[46] lazyeval_0.2.0 RCurl_1.95-4.8 tibble_1.2
[49] RSQLite_1.1-2 Formula_1.2-1 cluster_2.0.5
[52] Matrix_1.2-7.1 data.table_1.10.4 assertthat_0.1
[55] rpart_4.1-10 nnet_7.3-12