Dear all,
I have qPCR data obtained with Fluidigm biomark array 96*96 with HTqPCR package (it's not digital PCR). I have n.features=78 (including 17 duplicated genes) and n.data=84 (30 duplicated samples, 5 duplicated points (standard curve for efficiency), 1 duplicated calibrator sample, and 4 single samples).
I want to analyze my data by taking into account duplicates but failed. I tried several things including changeCtLayout without success. Any help will be greatly appreciate.
Here are my code
Regards
# Analyses with HTqPCR fluidigm array 96*96 (78*84) ####
m(list=ls())
library("HTqPCR")
workDir <- "C:/Analyses_HTqPCR"
setwd(workDir)
temp<-read.csv("qcg.csv",as.is=TRUE,skip=11, sep=";")
raw1 <- readCtData(files="qcg.csv", format="BioMark", n.features=78, n.data=84 ,
sep=";" ,
column.info = list(flag="Call", feature="Name.1", position="ID", Ct="Value"),
samples=temp$Name[seq(1,nrow(temp),78)])
plotCtArray(raw1)
datacg<-read.csv(file = "pData_cg.csv", sep=";")
dim(datacg)
[1] 84 4
## adding sample info to pData###
pData(raw1)<-data.frame(sample=datacg$sample,woman= datacg$woman,group= datacg$group, replicat =datacg$replicat)
head(pData(raw1))
sample woman group replicat
1 84b 84 CTRL 2
2 84 84 CTRL 1
3 Pp80 Pp80 TREAT 1
4 28b 28 CTRL 2
5 Pp40 Pp40 TREAT 1
6 28 28 CTRL 1
#define order sample #
order<-(c("84","84","Pp80","28","Pp40","28","Pp20","27","Pp10","27","105","105","89","89","85","85"))
raw_o<-changeCtLayout(raw1,sample.order = order)
Error in data.frame(..., check.names = FALSE) :
arguments imply differing number of rows: 2, 0, 1
sessionInfo()
R version 3.3.3 (2017-03-06)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows >= 8 x64 (build 9200)
attached base packages:
[1] parallel stats graphics grDevices utils datasets methods base
other attached packages:
[1] HTqPCR_1.28.0 limma_3.30.13 RColorBrewer_1.1-2 Biobase_2.34.0 BiocGenerics_0.20.0
loaded via a namespace (and not attached):
[1] gtools_3.5.0 bitops_1.0-6 affy_1.52.0 stats4_3.3.3
[5] KernSmooth_2.23-15 BiocInstaller_1.24.0 gplots_3.0.1 zlibbioc_1.20.0
[9] gdata_2.17.0 affyio_1.44.0 preprocessCore_1.36.0 tools_3.3.3
[13] rsconnect_0.7 caTools_1.17.1
Please not that I truncated the order content for easy viewing (so my order data contains 84 names).