Entering edit mode
Zach Brehm
•
0
@zach-brehm-16642
Last seen 5.6 years ago
Hello,
I am attempting to construct a dds object out some GTEx data obtained through Recount. When creating the dds object, I am met with an error that I believe is due to integers in the data that are too large for R. I have been unable to find a workaround for this thus far. The following output displays the command that generated the error, the error itself, and my session info.
Thanks, Zach
> dds_merge <- DESeqDataSet(rse_merge, design = ~1) %>% estimateSizeFactors()
converting counts to integer mode
Error in validObject(.Object) :
invalid class “DESeqDataSet” object: NA values are not allowed in the count matrix
In addition: Warning message:
In mde(x) : NAs introduced by coercion to integer range
> sessionInfo()
R version 3.6.0 (2019-04-26)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 10 x64 (build 16299)
Matrix products: default
Random number generation:
RNG: Mersenne-Twister
Normal: Inversion
Sample: Rounding
locale:
[1] LC_COLLATE=English_United States.1252 LC_CTYPE=English_United States.1252
[3] LC_MONETARY=English_United States.1252 LC_NUMERIC=C
[5] LC_TIME=English_United States.1252
attached base packages:
[1] parallel stats4 stats graphics grDevices utils datasets methods base
other attached packages:
[1] forcats_0.4.0 stringr_1.4.0 dplyr_0.8.0.1
[4] purrr_0.3.2 readr_1.3.1 tidyr_0.8.3
[7] tibble_2.1.1 ggplot2_3.1.1 tidyverse_1.2.1
[10] DESeq2_1.24.0 SummarizedExperiment_1.14.0 DelayedArray_0.10.0
[13] BiocParallel_1.17.18 matrixStats_0.54.0 Biobase_2.44.0
[16] GenomicRanges_1.36.0 GenomeInfoDb_1.20.0 IRanges_2.18.0
[19] S4Vectors_0.22.0 BiocGenerics_0.30.0
loaded via a namespace (and not attached):
[1] nlme_3.1-139 bitops_1.0-6 lubridate_1.7.4 bit64_0.9-7
[5] RColorBrewer_1.1-2 httr_1.4.0 tools_3.6.0 backports_1.1.4
[9] R6_2.4.0 rpart_4.1-15 Hmisc_4.2-0 DBI_1.0.0
[13] lazyeval_0.2.2 colorspace_1.4-1 nnet_7.3-12 withr_2.1.2
[17] tidyselect_0.2.5 gridExtra_2.3 bit_1.1-14 compiler_3.6.0
[21] cli_1.1.0 rvest_0.3.3 htmlTable_1.13.1 xml2_1.2.0
[25] scales_1.0.0 checkmate_1.9.3 genefilter_1.66.0 digest_0.6.18
[29] foreign_0.8-71 XVector_0.24.0 base64enc_0.1-3 pkgconfig_2.0.2
[33] htmltools_0.3.6 htmlwidgets_1.3 rlang_0.3.4 readxl_1.3.1
[37] rstudioapi_0.10 RSQLite_2.1.1 generics_0.0.2 jsonlite_1.6
[41] acepack_1.4.1 RCurl_1.95-4.12 magrittr_1.5 GenomeInfoDbData_1.2.1
[45] Formula_1.2-3 Matrix_1.2-17 Rcpp_1.0.1 munsell_0.5.0
[49] stringi_1.4.3 zlibbioc_1.30.0 plyr_1.8.4 grid_3.6.0
[53] blob_1.1.1 crayon_1.3.4 lattice_0.20-38 haven_2.1.0
[57] splines_3.6.0 annotate_1.62.0 hms_0.4.2 locfit_1.5-9.1
[61] knitr_1.22 pillar_1.4.0 geneplotter_1.62.0 XML_3.98-1.19
[65] glue_1.3.1 latticeExtra_0.6-28 data.table_1.12.2 modelr_0.1.4
[69] cellranger_1.1.0 gtable_0.3.0 assertthat_0.2.1 xfun_0.7
[73] xtable_1.8-4 broom_0.5.2 survival_2.44-1.1 AnnotationDbi_1.46.0
[77] memoise_1.1.0 cluster_2.0.8
Yes, but to be safe I just double checked them with the following:
Maybe you can follow up with the creators of the object as to why there is a seemingly erroneous value in the assay.