stackStringsFromBam with paired-end reads
1
0
Entering edit mode
@thomas-sandmann-6817
Last seen 16 months ago
USA

Dear Herve, Valerie and Martin,

thanks a lot for making to many useful methods available in the GenomicAlignments package. I have been exploring the examples in the stackStringsFromBam documentation to obtain a consensus matrix from a bam file. 

Yet, my data contains paired-end data from short amplicons, which overlap substantially. For example, part of the amplicon is covered both by the forward and reverse alignment of each pair. The stackStringsFromBam documentation clearly states that "Paired-end reads are treated as single-end reads (i.e. they're not paired)." Yet, simply ignoring this information will count nucleotides in the overlap region from the same molecule twice (once from the forward, once from the reverse read of each pair).

Do you have a recommendation on how to deal with paired-end data such as this? For example, could the sequenceLayer method be used to overlay the forward and reverse read of a pair and return a consensus? (In case of discordance, I would happily accept an 'N' nucleotide.)

I found a previous post by Herve (convert GAlignmentPairs to GAlignment) suggesting to use a tool outside of BioC to stitch together overlapping reads before the alignment. Yet, this strategy would require another third-party tool e.g. Edgar & Flyvbjerg, Bioinformatics, 2015

Section "2.15 How to create DNA consensus sequences for read group ‘families’" of the GenomicRangesHOWTO.pdf vignette describes the analysis of amplicon data, but seems also restricted to single-end sequencing data. Perhaps there is an extension of this example that would make it work for paired-end data, too?

Thanks a lot for any pointers or ideas,
best,
Thomas

stackStringsFromBam genomicalignments GenomicAlignments • 1.5k views
ADD COMMENT
0
Entering edit mode
@herve-pages-1542
Last seen 2 days ago
Seattle, WA, United States

Hi Thomas,

Yes the sequenceLayer() function can be used to overlay the forward and reverse read of a pair and return a consensus. The layQuerySequencesOnRef() function below does that.

library(GenomicAlignments)

## A parallel string consensus function.
## Stronger letters win over weaker letters. Letters strength from
## stronger to weaker: nucleotide > D.letter (deletion) >
## N.letter (skipped region).
.pconsensus <- function(x, y, D.letter="-", N.letter=".",
                           discord.letter="N")
{
  stopifnot(identical(width(x), width(y)))
  unlisted_x <- unlist(x, use.names=FALSE)
  unlisted_y <- unlist(y, use.names=FALSE)

  D_byte <- as.raw(DNAString(D.letter))
  N_byte <- as.raw(DNAString(N.letter))
  y_bytes <- as.raw(unlisted_y)
  y_is_nucleotide <- !(y_bytes %in% c(N_byte, D_byte))

  x_bytes <- as.raw(unlisted_x)
  replace_idx <- which(x_bytes == N_byte |
                       x_bytes == D_byte & y_is_nucleotide)
  unlisted_x[replace_idx] <- unlisted_y[replace_idx]

  x_bytes <- as.raw(unlisted_x)
  is_discordant <- x_bytes != y_bytes & y_is_nucleotide
  unlisted_x[is_discordant] <- discord.letter

  ans <- relist(unlisted_x, x)
  discord_at <- which(relist(is_discordant, x))
  mcols(ans) <- DataFrame(discord_at=discord_at)          
  ans
}

## Lay each pair of query sequences along the reference and merge
## the 2 sequences in each pair by filling the gap between them
## with "+". In case of overlay between the 2 mates, discordant
## nucleotides are replaced with an N. The returned DNAStringSet
## object has the same shape (i.e. same length and width) as
## 'granges(galp)'.
layQuerySequencesOnRef <- function(galp, mate.gap.letter="+",
                                         D.letter="-",
                                         N.letter=".",
                                         discord.letter="N")
{
  stopifnot(is(galp, "GAlignmentPairs"))
  gal1 <- first(galp, real.strand=TRUE)
  gal2 <- last(galp, real.strand=TRUE)
  qseq1 <- mcols(gal1)$seq
  qseq2 <- mcols(gal2)$seq
  if (is.null(qseq1) || is.null(qseq2))
    stop(wmsg(
      "'galp' doesn't contain the query sequences. ",
      "Make sure you load it with ",
      "readGAlignmentPairs(..., ",
      "param=ScanBamParam(what=\"seq\")"
    ))

  mate.gap.letter <- Biostrings:::.normarg_padding.letter(
                         mate.gap.letter, 
                         seqtype(qseq1))
  qseq1_on_ref <- sequenceLayer(qseq1, cigar(gal1),
                                D.letter=D.letter,
                                N.letter=N.letter)
  qseq2_on_ref <- sequenceLayer(qseq2, cigar(gal2),
                                D.letter=D.letter,
                                N.letter=N.letter)

  gr1 <- granges(gal1)
  stopifnot(identical(width(gr1), width(qseq1_on_ref)))
  gr2 <- granges(gal2)
  stopifnot(identical(width(gr2), width(qseq2_on_ref)))
  gr <- punion(gr1, gr2, fill.gap=TRUE)  # same as granges(galp)

  big_gap <- paste0(rep.int(mate.gap.letter, max(width(gr))),
                 collapse="")
  ans <- extractAt(DNAString(big_gap),
                   IRanges(1L, width=width(gr)))
  start1 <- start(gr1) - start(gr) + 1L
  subseq(ans, start=start1, width=width(gr1)) <- qseq1_on_ref
  start2 <- start(gr2) - start(gr) + 1L
  subseq(ans, start=start2, width=width(gr2)) <- qseq2_on_ref

  ## Resolve mate sequence discordance by replacing discordant
  ## nucleotides with an N.

  overlay_gr <- pintersect(gr1, gr2)
  start1 <- pmax(start(overlay_gr) - start(gr1) + 1L, 1L)
  start1 <- pmin(start1, width(gr1))
  overlay1 <- subseq(qseq1_on_ref, start=start1,
                                   width=width(overlay_gr))
  start2 <- pmax(start(overlay_gr) - start(gr2) + 1L, 1L)
  start2 <- pmin(start2, width(gr2))
  overlay2 <- subseq(qseq2_on_ref, start=start2,
                                   width=width(overlay_gr))

  overlay <- .pconsensus(overlay1, overlay2,
                         D.letter=D.letter, N.letter=N.letter,
                         discord.letter=discord.letter)

  overlay_offset <- start(overlay_gr) - start(gr)
  subseq(ans, start=overlay_offset + 1L,
              width=width(overlay_gr)) <- overlay

  mate_discord_at <- mcols(overlay)$discord_at + overlay_offset
  mcols(ans) <- DataFrame(mate_discord_at=mate_discord_at)
  ans
}

Then:

library(RNAseqData.HNRNPC.bam.chr14)
param <- ScanBamParam(what="seq")
bamfile <- RNAseqData.HNRNPC.bam.chr14_BAMFILES[1]
galp <- readGAlignmentPairs(bamfile, param=param)

qseq_on_ref <- layQuerySequencesOnRef(galp)
gr <- granges(galp)
stopifnot(identical(width(qseq_on_ref), width(gr)))  # sanity check

mcols(gr)$qseq_on_ref <- qseq_on_ref
mcols(gr)$mate_discord_at <- mcols(qseq_on_ref)$mate_discord_at

## Note that there is a display issue for objects with long DNA sequences in
## their metadata columns. The issue is addressed in Biostrings >= 2.39.3.
gr[973:976]
# GRanges object with 4 ranges and 2 metadata columns:
#       seqnames               ranges strand |             qseq_on_ref
#          <Rle>            <IRanges>  <Rle> |          <DNAStringSet>
#   [1]    chr14 [19684694, 19684812]      - | AGCCATGCCA...TTGCTTCGTA
#   [2]    chr14 [19684743, 19684917]      + | CATCACCTGC...GAGCTCGGGG
#   [3]    chr14 [19684728, 19684820]      - | CGTCACTGGC...TAGTGCCACA
#   [4]    chr14 [19684716, 19684820]      - | TGCCAACCCA...TAGTGCCACA
#       mate_discord_at
#         <IntegerList>
#   [1]        54,63,67
#   [2]                
#   [3]                
#   [4]              52
#   -------
#   seqinfo: 93 sequences from an unspecified genome

The mate_discord_at metadata column indicates the location in qseq_on_ref where the Ns were injected. There doesn't seem to be too much discord:

> table(elementLengths(mcols(gr)$mate_discord_at))

     0      1      2      3      4 
389479   7889   2294    330     62 

Then it's easy for example to put the reference sequences on gr, side by side with the query sequences:

library(BSgenome.Hsapiens.UCSC.hg19)
genome <- BSgenome.Hsapiens.UCSC.hg19
mcols(gr)$rseq <- getSeq(genome, unstrand(gr))

gr[973:976]
# GRanges object with 4 ranges and 3 metadata columns:
#       seqnames               ranges strand |             qseq_on_ref
#          <Rle>            <IRanges>  <Rle> |          <DNAStringSet>
#   [1]    chr14 [19684694, 19684812]      - | AGCCATGCCA...TTGCTTCGTA
#   [2]    chr14 [19684743, 19684917]      + | CATCACCTGC...GAGCTCGGGG
#   [3]    chr14 [19684728, 19684820]      - | CGTCACTGGC...TAGTGCCACA
#   [4]    chr14 [19684716, 19684820]      - | TGCCAACCCA...TAGTGCCACA
#       mate_discord_at                    rseq
#         <IntegerList>          <DNAStringSet>
#   [1]        54,63,67 AGCCATGCCA...TTGCTTCGTA
#   [2]                 CATCACCTGC...GAGCTCGGGG
#   [3]                 CGTCACTGGC...TAGTGCCACA
#   [4]              52 TGCCAACCCA...TAGTGCCACA
#   -------
#   seqinfo: 93 sequences from an unspecified genome

Is this what you were looking after? I'll add this to the GenomicAlignments package today.

Cheers,

H.

ADD COMMENT
0
Entering edit mode

I've edited my answer above to address an issue with mate sequence discordance resolution.

H.

ADD REPLY

Login before adding your answer.

Traffic: 549 users visited in the last hour
Help About
FAQ
Access RSS
API
Stats

Use of this site constitutes acceptance of our User Agreement and Privacy Policy.

Powered by the version 2.3.6