Hello,
I am trying to analyze GSE7864 and would like to know how miR34a, miR34b, and miR34c influence the gene expression, i.e., what is the Differentially expressed genes (DGE) caused by miR34a, miR34b, and miR34c, respectively?
The following is my code, but I am not sure how to construct design matrix according the tTarget information (i.e., targets frame according to Limma tutorial). I am trying to select a subset according to different Cy3 and the subsetted targets frame called sTarget, I know sTarget belongs to two-color with common reference designs (p37 in Limma tutorial), but using sTargets only can not build linear model in Limma since no enough replicates for each treatment. In this case, how can I get the DGE permuted by miR34a, miR34b, and miR34c, respectively? Or is there anther way to obtain the DGE by using all arrays instead of just 3 like in sTargets? If so, how to contrast the design matrix and contrast matrix? I can not find the similar examples in Limma tutorial.
If 2-fold change is used the measure the extent of DGE for GSM190752 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM190752), then FC = 10^VAUE (since VALUE is LOG10 RATIO)? and the genes with abs(FC) > 2 are DGE permuted by miR34a?
Any help is appreciated!
Kevin
# https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE7864
eset <- getGEO(filename = "GSE7864_series_matrix.txt.gz")
tCy3 = rep(c("A549H1", "HCT116Dicer", "TOV21GH1", "DLDDicer", "HeLa", "A549p53", "TOV21Gp53"), each = 4)
tCy5 = rep(c("Luc", "miR34a", "miR34b", "miR34c"), times = 7)
pd <- pData(eset)
tTarget <- data.frame(gsm = rownames(pd), Cy3 = tCy3, Cy5 = tCy5)
###########################################################
> tTarget
gsm Cy3 Cy5
1 GSM190751 A549H1 Luc
2 GSM190752 A549H1 miR34a
3 GSM190753 A549H1 miR34b
4 GSM190754 A549H1 miR34c
5 GSM190755 HCT116Dicer Luc
6 GSM190756 HCT116Dicer miR34a
7 GSM190757 HCT116Dicer miR34b
8 GSM190758 HCT116Dicer miR34c
9 GSM190759 TOV21GH1 Luc
10 GSM190760 TOV21GH1 miR34a
11 GSM190761 TOV21GH1 miR34b
12 GSM190762 TOV21GH1 miR34c
13 GSM190763 DLDDicer Luc
14 GSM190764 DLDDicer miR34a
15 GSM190765 DLDDicer miR34b
16 GSM190766 DLDDicer miR34c
17 GSM190767 HeLa Luc
18 GSM190768 HeLa miR34a
19 GSM190769 HeLa miR34b
20 GSM190770 HeLa miR34c
21 GSM190771 A549p53 Luc
22 GSM190772 A549p53 miR34a
23 GSM190773 A549p53 miR34b
24 GSM190774 A549p53 miR34c
25 GSM190775 TOV21Gp53 Luc
26 GSM190776 TOV21Gp53 miR34a
27 GSM190777 TOV21Gp53 miR34b
28 GSM190778 TOV21Gp53 miR34c
###########################################
# selected Cy3 and Cy5
sCy3 = c("A549H1")
sCy5 = c("miR34a", "miR34b", "miR34c")
isSelected <- (tTarget$Cy3 %in% sCy3) & (tTarget$Cy5 %in% sCy5)
sTarget <- tTarget[isSelected, ]
###########################################
> sTarget
gsm Cy3 Cy5
2 GSM190752 A549H1 miR34a
3 GSM190753 A549H1 miR34b
4 GSM190754 A549H1 miR34c
Thanks Gordon. I got it.