Hello everyone, Greetings of the day. I am doing differential expression analysis of RNA seq data using DESeq2.
Here are my codes
# #loading our expression data
> hep <- read.csv("hep.csv")
#create experiment labels (two conditions)
> colData <- DataFrame(condition=factor(c("U", "I", "U", "U", "I", "U", "I", "U", "I", "U", "I", "U", "U", "I", "U", "I", "U", "I", "U", "I", "U", "I", "U", "I", "U", "I", "U", "I", "U", "I", "U", "I", "U", "I", "U", "I", "U", "I", "U", "I", "U")))
# create DESeq input matrix
> countDataMatrix <- as.matrix(hep[ , -1])
> rownames(countDataMatrix) <- hep[ , 1]
> dds <- DESeqDataSetFromMatrix(countDataMatrix, colData,formula(~condition))
# run DEseq
> dds <- DESeq(dds)
# visualize differentially expressed genes
> plotMA(dds)
# get differentially expressed genes
> res <- results(dds)
# order by BH adjusted p-value
> resOrdered <- res[order(res$padj),]
# top of ordered matrix
> head(resOrdered)
# how many differentially expressed genes ? FDR=10%, |fold-change|>2 (up and down)
# get differentially expressed gene matrix
> sig <- resOrdered[!is.na(resOrdered$padj) & resOrdered$padj<0.10 & abs(resOrdered$log2FoldChange)>=1,]
> head(sig)
>dim(sig)
#Here is my output table
# baseMean log2FoldChange lfcSE stat pvalue padj
ENSG00000185559 2060.96296009909 -7.90822697617837 1.10122142389957 -7.18132321488469 6.90399166815319E-13 2.10979081387093E-08
ENSG00000167244 3949.71951799667 -5.08717606829602 0.754384957336078 -6.74347495774585 1.54642640462757E-11 2.3628622249507E-07
ENSG00000149948 321.403334257597 -6.05675672917759 0.947898431269116 -6.38966848069193 1.66245778534973E-10 1.69343491541675E-06
ENSG00000225972 1293.57298498576 3.62414564398317 0.592157910519195 6.12023512580551 9.34373799741777E-10 7.13838223657724E-06
ENSG00000002726 56.1685926119863 -3.15318299470966 0.527678364772323 -5.97557755863301 2.29276426158759E-09 1.4012916613971E-05
ENSG00000207805 10.6401492600533 -4.28119895712609 0.792715217804701 -5.40067714226831 6.63898166734393E-08 0.000338134401287
ENSG00000213759 529.226580136276 2.12463768243135 0.406108642472941 5.23169777794845 1.67960198273993E-07 0.000733242242722
ENSG00000225431 32.3231732869748 -2.30244023822726 0.459828852435173 -5.00716783219222 5.52367609453529E-07 0.002109975222161
ENSG00000146755 113.963384966465 -3.4300823355342 0.69271221959034 -4.9516700276526 7.35792915628377E-07 0.002498343967632
ENSG00000081051 2444.2873558266 -3.16862679078253 0.644789347009389 -4.91420462431492 8.91436088073928E-07 0.002724139541545
ENSG00000268916 14.4309338536539 4.36074748766037 0.941713857295316 4.63065022764433 3.64519195369733E-06 0.010126674628458
ENSG00000226674 58.3897020661263 2.28950978708294 0.49820234156553 4.59554200385427 4.31625829754784E-06 0.010991711442897
ENSG00000240280 43.9359006543918 4.00711572786826 0.881318877406284 4.54672631052812 5.44867771430736E-06 0.012361076873163
ENSG00000260468 6.7333035049915 1.78191180184629 0.39261294093126 4.53859670957274 5.66298230388024E-06 0.012361076873163
ENSG00000144407 141.648572691354 3.10707268649824 0.697153223423106 4.45680028737749 8.31920389624939E-06 0.016948436791032
ENSG00000224271 5.62601524439391 4.14894392002511 0.938786651098153 4.41947477115472 9.89410705328228E-06 0.017785530437721
ENSG00000266976 69.4694521188834 3.62763362034337 0.819229796198089 4.42810263637702 9.50656643611501E-06 0.017785530437721
ENSG00000124333 75.3122612551427 1.86859729730161 0.42444319890528 4.40246728448254 1.07026732667891E-05 0.018170166242212
ENSG00000108849 11.5714376765048 -6.53424383502879 1.50322134616343 -4.34682746603201 1.38120780494038E-05 0.022214910163775
ENSG00000137434 18.1272824429854 -1.56573178834447 0.363351519148957 -4.30913786190224 1.63892185405838E-05 0.024548070212095
ENSG00000214814 79.102503812347 -3.53012101909442 0.820434185566485 -4.30274735158309 1.68693175317906E-05 0.024548070212095
ENSG00000116017 799.692245375309 -1.74222460326634 0.406662384483919 -4.28420397297708 1.83394607706386E-05 0.02547434462227
ENSG00000176566 13.2968817707014 4.95489705054512 1.16245918134296 4.26242669856233 2.02218841381916E-05 0.026867850320826
ENSG00000184368 162.58416359746 -2.81013518467859 0.667606961944708 -4.20926584781681 2.56201797362355E-05 0.032621961356651
ENSG00000112164 20.8835046336506 -3.38561722888854 0.817704276653758 -4.14039320271541 3.46711000502653E-05 0.041270008145417
ENSG00000171004 27.4773686946661 -2.64659962606986 0.64275932734876 -4.11755926901363 3.82906073410181E-05 0.041270008145417
ENSG00000187922 7.34933234064925 2.04931419571231 0.498331216458142 4.11235364759543 3.91645746332371E-05 0.041270008145417
ENSG00000272620 27.9589191748043 2.52755230744927 0.612831220135527 4.12438567814855 3.71725566875677E-05 0.041270008145417
ENSG00000144045 84.7602950281065 -2.88426440799247 0.715357797805104 -4.03191859631937 5.53233512132309E-05 0.056354209657504
ENSG00000236254 1.78090497100626 3.37973217752836 0.850391083903516 3.97432692028533 7.05785644901908E-05 0.069574527492121
ENSG00000251775 12.8515566707548 1.18084328772373 0.298992607613174 3.94940629853786 7.83452718012966E-05 0.074817286280495
ENSG00000251199 4.25714234412063 4.35370844102631 1.11319774138175 3.91099288040443 9.19174820054295E-05 0.08511837371527
ENSG00000073792 1032.69179338924 -2.00886422868782 0.515737834607477 -3.89512673666214 9.81473976860241E-05 0.088214303702565
ENSG00000275325 5.92655429825542 -2.9449307887884 0.758921164537715 -3.88041726386991 0.000104277413332 0.091046099257144
ENSG00000158639 34.5094755666945 3.13929027696926 0.8155897399841 3.84910466999065 0.000118550345532 0.099822574573307
ENSG00000233797 7.30499491728945 -2.17425214494496 0.566532412943642 -3.83782480096377 0.000124128990929 0.099822574573307
ENSG00000268460 8.57078380261895 2.48504144410798 0.647351546931695 3.83878196613036 0.000123646166067 0.099822574573307
Now, I want to determine in this table, which genes upregulated genes and which genes are downregulated. Any help would be appreciated.
Thanks for the clarification. I was just little bit confused. Thanks for providing your time..