DiffBind spike-in normalisation with varying amounts of spike-in chromatin
0
0
Entering edit mode
Drew • 0
@b1719b98
Last seen 2.6 years ago
Germany

Hi there!

I am currently using DiffBind v3.2.7 to analyse some ChIP-seq data for RNA Polymerase III (RNAPIII). We have Drosophila spike-in chromatin in the samples that I would like to use in DiffBind to normalise the data. The problem is that during library prep, some of the samples accidentally got different proportions of the spike-in chromatin relative to sample chromatin.

My question is whether this can be accounted for in DiffBind. What I have tried is calculating factors for each sample which are the %spike-in for sample / min %spike-in of all samples. I then thought to multiply the values in dba$norm$DESeq2$norm.facs by these new factors before dba.analyze(). I multiply here since I believe these norm.facs are used to divide counts during analysis (therefore, libraries with more spike-in get bigger norm.facs, which results in down scaling when divided during analysis). Please let me know if this makes sense and is ok to do in any way, or if there is anything else that can be done (like sampling the bam files to achieve similar read counts before DiffBind). Thanks!

sessionInfo( )
R version 4.1.1 (2021-08-10)
Platform: x86_64-suse-linux-gnu (64-bit)
Running under: SUSE Linux Enterprise Server 12 SP4

Matrix products: default
BLAS:   /usr/lib64/R/lib/libRblas.so
LAPACK: /usr/lib64/R/lib/libRlapack.so

locale:
 [1] LC_CTYPE=en_GB.UTF-8       LC_NUMERIC=C               LC_TIME=en_GB.UTF-8       
 [4] LC_COLLATE=en_GB.UTF-8     LC_MONETARY=en_GB.UTF-8    LC_MESSAGES=en_GB.UTF-8   
 [7] LC_PAPER=en_GB.UTF-8       LC_NAME=C                  LC_ADDRESS=C              
[10] LC_TELEPHONE=C             LC_MEASUREMENT=en_GB.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats4    parallel  stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] dplyr_1.0.7                 DiffBind_3.2.7              profileplyr_1.8.1          
 [4] SummarizedExperiment_1.22.0 Biobase_2.52.0              GenomicRanges_1.44.0       
 [7] GenomeInfoDb_1.28.4         IRanges_2.26.0              S4Vectors_0.30.0           
[10] MatrixGenerics_1.4.3        matrixStats_0.60.1          BiocGenerics_0.38.0
DiffBind ChIPSeq Normalization SpikeIn • 1.1k views
ADD COMMENT

Login before adding your answer.

Traffic: 520 users visited in the last hour
Help About
FAQ
Access RSS
API
Stats

Use of this site constitutes acceptance of our User Agreement and Privacy Policy.

Powered by the version 2.3.6