Gage pathway analysis of RNAseq graphical representation as dot plot
0
0
Entering edit mode
@998340ab
Last seen 12 weeks ago
United Kingdom

Hello,

I have run DESeq analysis on my RNAseq data to find differential expression analysis. Then I wanted to look on gene sets and I used gage package. I can output my data and visualise in pathview. I would like to ask you if I can use the output from gage and use in to make a dot plot like the one shown here https://bioinformatics-core-shared-training.github.io/cruk-summer-school-2018/RNASeq2018/html/06_Gene_set_testing.nb.html#go-enrichment-analysis in the goseq package.

The code to make this plot taken from the site is the following:


goResults %>% 
  top_n(10, wt=-over_represented_pvalue) %>% 
  mutate(hitsPerc=numDEInCat*100/numInCat) %>% 
  ggplot(aes(x=hitsPerc, 
             y=term, 
             colour=over_represented_pvalue, 
             size=numDEInCat)) +
  geom_point() +
  expand_limits(x=0) +
  labs(x="Hits (%)", y="GO term", colour="p value", size="Count")

Some explanations: over_rep_pval: p-value for over representation of the term in the differentially expressed genes numDEInCat: number of differentially expressed genes in this category numInCat: number of genes in this category term: detail of the term

When I use the gage package

fc.go.bp.p <- gage(res.fc, gsets = go.bp.gs)

# convert the go results to data frames
 fc.go.bp.p.up <- as.data.frame(fc.go.bp.p$greater)
 fc.go.bp.p.down <- as.data.frame(fc.go.bp.p$less)
fc.go.bp.p.down$term <-row.names(fc.go.bp.p.down)
 #Plot the top 10
 fc.go.bp.p.down  %>% 
   top_n(10, wt=-q.val) %>% 
   mutate(hitsPerc=exp1*100) %>% 
   ggplot(aes(x=hitsPerc, 
              y=term, 
              colour=q.val, 
              size=set.size)) +
   geom_point() +
   expand_limits(x=0) +
   labs(x="Hits (%)", y="GO term", colour="p value", size="Count")

I am not sure if the exp1 refers the the percentage as the term is not explained in the R documentation. Will the way I have written the plot give an analogous output as the goseq package? The output from gage is p.geomean,stat.mean,p.val,q.val,set.size and exp1.

Thanks, Maria

sessionInfo( )
R version 4.1.2 (2021-11-01)
Platform: x86_64-w64-mingw32/x64 (64-bit)
Running under: Windows 10 x64 (build 18363)

Matrix products: default

locale:
[1] LC_COLLATE=English_United Kingdom.1252 
[2] LC_CTYPE=English_United Kingdom.1252   
[3] LC_MONETARY=English_United Kingdom.1252
[4] LC_NUMERIC=C                           
[5] LC_TIME=English_United Kingdom.1252    

attached base packages:
[1] parallel  stats4    stats     graphics  grDevices utils     datasets 
[8] methods   base     

other attached packages:
 [1] rtracklayer_1.54.0          goseq_1.46.0               
 [3] geneLenDataBase_1.30.0      BiasedUrn_1.07             
 [5] pathview_1.32.0             org.Hs.eg.db_3.13.0        
 [7] GO.db_3.13.0                AnnotationDbi_1.56.2       
 [9] gage_2.42.0                 ggbeeswarm_0.6.0           
[11] RColorBrewer_1.1-2          vsn_3.60.0                 
[13] pcaExplorer_2.18.0          UpSetR_1.4.0               
[15] pheatmap_1.0.12             magrittr_2.0.2             
[17] DEFormats_1.20.0            reshape2_1.4.4             
[19] ggpubr_0.4.0                DESeq2_1.32.0              
[21] SummarizedExperiment_1.22.0 Biobase_2.52.0             
[23] MatrixGenerics_1.4.3        matrixStats_0.61.0         
[25] GenomicRanges_1.44.0        GenomeInfoDb_1.28.4        
[27] IRanges_2.26.0              S4Vectors_0.30.0           
[29] BiocGenerics_0.38.0         forcats_0.5.1              
[31] stringr_1.4.0               dplyr_1.0.8                
[33] purrr_0.3.4                 readr_2.1.2                
[35] tidyr_1.2.0                 tibble_3.1.6               
[37] ggplot2_3.3.5               tidyverse_1.3.1            
[39] edgeR_3.34.1                limma_3.48.3               

loaded via a namespace (and not attached):
  [1] utf8_1.2.2               shinydashboard_0.7.2    
  [3] tidyselect_1.1.2         heatmaply_1.3.0         
  [5] RSQLite_2.2.10           htmlwidgets_1.5.4       
  [7] grid_4.1.2               TSP_1.1-11              
  [9] BiocParallel_1.26.2      munsell_0.5.0           
 [11] preprocessCore_1.54.0    codetools_0.2-18        
 [13] DT_0.21                  withr_2.4.3             
 [15] colorspace_2.0-2         Category_2.60.0         
 [17] filelock_1.0.2           knitr_1.37              
 [19] rstudioapi_0.13          ggsignif_0.6.3          
 [21] NMF_0.23.0               labeling_0.4.2          
 [23] KEGGgraph_1.54.0         GenomeInfoDbData_1.2.7  
 [25] topGO_2.46.0             farver_2.1.0            
 [27] bit64_4.0.5              vctrs_0.3.8             
 [29] generics_0.1.2           xfun_0.29               
 [31] BiocFileCache_2.2.1      R6_2.5.1                
 [33] doParallel_1.0.17        seriation_1.3.2         
 [35] locfit_1.5-9.4           bitops_1.0-7            
 [37] cachem_1.0.6             shinyAce_0.4.1          
 [39] DelayedArray_0.18.0      assertthat_0.2.1        
 [41] BiocIO_1.4.0             promises_1.2.0.1        
 [43] scales_1.1.1             beeswarm_0.4.0          
 [45] gtable_0.3.0             affy_1.70.0             
 [47] rlang_1.0.1              genefilter_1.74.0       
 [49] splines_4.1.2            rstatix_0.7.0           
 [51] lazyeval_0.2.2           shinyBS_0.61            
 [53] broom_0.7.12             checkmate_2.0.0         
 [55] yaml_2.3.5               BiocManager_1.30.16     
 [57] abind_1.4-5              modelr_0.1.8            
 [59] GenomicFeatures_1.46.5   threejs_0.3.3           
 [61] crosstalk_1.2.0          backports_1.4.1         
 [63] httpuv_1.6.5             RBGL_1.68.0             
 [65] tools_4.1.2              gridBase_0.4-7          
 [67] affyio_1.62.0            ellipsis_0.3.2          
 [69] Rcpp_1.0.8               plyr_1.8.6              
 [71] base64enc_0.1-3          progress_1.2.2          
 [73] zlibbioc_1.38.0          RCurl_1.98-1.6          
 [75] prettyunits_1.1.1        viridis_0.6.2           
 [77] haven_2.4.3              ggrepel_0.9.1           
 [79] cluster_2.1.2            fs_1.5.2                
 [81] data.table_1.14.2        SparseM_1.81            
 [83] reprex_2.0.1             hms_1.1.1               
 [85] mime_0.12                evaluate_0.15           
 [87] xtable_1.8-4             XML_3.99-0.8            
 [89] readxl_1.3.1             gridExtra_2.3           
 [91] compiler_4.1.2           biomaRt_2.50.3          
 [93] crayon_1.5.0             htmltools_0.5.2         
 [95] GOstats_2.60.0           mgcv_1.8-39             
 [97] later_1.3.0              tzdb_0.2.0              
 [99] geneplotter_1.72.0       lubridate_1.8.0         
[101] DBI_1.1.2                dbplyr_2.1.1            
[103] MASS_7.3-55              rappdirs_0.3.3          
[105] Matrix_1.4-0             car_3.0-12              
[107] cli_3.2.0                glmpca_0.2.0            
[109] igraph_1.2.11            pkgconfig_2.0.3         
[111] GenomicAlignments_1.30.0 registry_0.5-1          
[113] plotly_4.10.0            xml2_1.3.3              
[115] foreach_1.5.2            annotate_1.72.0         
[117] vipor_0.4.5              rngtools_1.5.2          
[119] pkgmaker_0.32.2          webshot_0.5.2           
[121] XVector_0.32.0           AnnotationForge_1.36.0  
[123] rvest_1.0.2              digest_0.6.29           
[125] graph_1.70.0             Biostrings_2.60.2       
[127] rmarkdown_2.11           cellranger_1.1.0        
[129] dendextend_1.15.2        GSEABase_1.56.0         
[131] restfulr_0.0.13          curl_4.3.2              
[133] Rsamtools_2.10.0         shiny_1.7.1             
[135] rjson_0.2.21             nlme_3.1-155            
[137] lifecycle_1.0.1          jsonlite_1.7.3          
[139] carData_3.0-5            viridisLite_0.4.0       
[141] fansi_1.0.2              pillar_1.7.0            
[143] lattice_0.20-45          KEGGREST_1.34.0         
[145] fastmap_1.1.0            httr_1.4.2              
[147] survival_3.2-13          glue_1.6.1              
[149] png_0.1-7                iterators_1.0.14        
[151] bit_4.0.4                Rgraphviz_2.36.0        
[153] stringi_1.7.6            blob_1.2.2              
[155] memoise_2.0.1
gage plot RNASeq goseq • 120 views
ADD COMMENT

Login before adding your answer.

Traffic: 197 users visited in the last hour
Help About
FAQ
Access RSS
API
Stats

Use of this site constitutes acceptance of our User Agreement and Privacy Policy.

Powered by the version 2.3.6