Hello everyone, I am analysing a study in GEO database with a number:GSE41364, I'm downloading raw data from GEO site. Unfortunately I have stumbled upon a problem. I don't know if I'm doing something wrong or things are just ok, but when it comes to summary results after fitting there seems to be a problem. Intercept shows that there are 0 genes that are down regulated and NotSig. But then EXP2 and EXP3 shows that there are a few thousands gene that are NoSig, but 0 genes that are down regulated and up regulated. But on the other hand the data form 'treatment5 μM of 5-Aza' and 'treatment10 μM of 5-Aza' in result after fitting seems to be just fine.
Thanks for help :)
library(limma)
library(affy)
library(hgu133plus2.db)
library(annotate)
#The data files are contained in the extdata directory of the estrogen package:
datadir = dir()
targets = readTargets(file ='Targets.txt', path = NULL, sep='\t', row.name='FileName')
targets
ab <- ReadAffy(filenames=targets$FileName, celfile.path=NULL)
eset <- rma(ab)
dim(eset)
plotMDS(eset)
ID <- featureNames(eset)
Symbol <- getSYMBOL(ID,"hgu133plus2.db")
fData(eset) <- data.frame(Symbol=Symbol)
#We remove all probes that do not have an Entrez Gene ID and Symbol:
HasSymbol <- !is.na(fData(eset)$Symbol)
eset <- eset[HasSymbol,]
dim(eset)
plotMDS(eset)
#Differential expression
Exp <- factor(targets$Experiment)
treatment <- factor(targets$treatment, levels=c("0 μM of 5-Aza","5 μM of 5-Aza", "10 μM of 5-Aza"))
design <- model.matrix(~Exp+treatment)
#fitting
fit <- lmFit(eset, design)
fit <- eBayes(fit, trend=TRUE, robust=TRUE)
results <- decideTests(fit)
summary(results)
#Output of my code:
datadir = dir()
> targets = readTargets(file ='Targets.txt', path = NULL, sep='\t', row.name='FileName')
> targets
FileName treatment Experiment
GSM1015541_HT29_P12_D1.CEL GSM1015541_HT29_P12_D1.CEL 0 μM of 5-Aza 1
GSM1015542_HT29_P12_D2.CEL GSM1015542_HT29_P12_D2.CEL 0 μM of 5-Aza 2
GSM1015543_HT29_P12_D3.CEL GSM1015543_HT29_P12_D3.CEL 0 μM of 5-Aza 3
GSM1015544_HT29_P12_A1.CEL GSM1015544_HT29_P12_A1.CEL 5 μM of 5-Aza 1
GSM1015545_HT29_P12_A2.CEL GSM1015545_HT29_P12_A2.CEL 5 μM of 5-Aza 2
GSM1015546_HT29_P12_A3.CEL GSM1015546_HT29_P12_A3.CEL 5 μM of 5-Aza 3
GSM1015547_HT29_P14_B2.CEL GSM1015547_HT29_P14_B2.CEL 10 μM of 5-Aza 1
GSM1015548_HT29_P14_B4.CEL GSM1015548_HT29_P14_B4.CEL 10 μM of 5-Aza 2
GSM1015549_HT29_P14_B5.CEL GSM1015549_HT29_P14_B5.CEL 10 μM of 5-Aza 3
> ab <- ReadAffy(filenames=targets$FileName, celfile.path=NULL)
> eset <- rma(ab)
Background correcting
Normalizing
Calculating Expression
> dim(eset)
Features Samples
54675 9
> plotMDS(eset)
> ID <- featureNames(eset)
> Symbol <- getSYMBOL(ID,"hgu133plus2.db")
> fData(eset) <- data.frame(Symbol=Symbol)
> HasSymbol <- !is.na(fData(eset)$Symbol)
> eset <- eset[HasSymbol,]
> dim(eset)
Features Samples
43138 9
> plotMDS(eset)
> Exp <- factor(targets$Experiment)
> treatment <- factor(targets$treatment, levels=c("0 μM of 5-Aza","5 μM of 5-Aza", "10 μM of 5-Aza"))
> design <- model.matrix(~Exp+treatment)
> fit <- lmFit(eset, design)
> fit <- eBayes(fit, trend=TRUE, robust=TRUE)
> results <- decideTests(fit)
> summary(results)
(Intercept) Exp2 Exp3 treatment5 μM of 5-Aza treatment10 μM of 5-Aza
Down 0 0 0 4123 5264
NotSig 0 43138 43138 34424 33781
Up 43138 0 0 4591 4093
Thank you for your help