Dear Experts, I have RNAseq data from 6 different plant samples (2 control, 2 Sensitive, and 2 tolerance), and different location of one species. I am trying to see the effect of the different groups at different time points, but after going through all the posts and vignettes I am confused.
dds <- DESeqDataSetFromMatrix(htseq_data, sampleTable, design = ~ group + time + group:time )
And this is my sample table:
time group
MR219_0h_1 0h CT
MR219_0h_2 0h CT
MR219_0h_3 0h CT
MR219_2h_1 2h CT
MR219_2h_2 2h CT
MR219_2h_3 2h CT
MR219_4h_1 4h CT
MR219_4h_2 4h CT
MR219_4h_3 4h CT
MU005_0h_1 0h HS
MU005_0h_2 0h HS
MU005_0h_3 0h HS
MU005_2h_1 2h HS
MU005_2h_2 2h HS
MU005_2h_3 2h HS
MU005_4h_1 4h HS
MU005_4h_2 4h HS
MU005_4h_3 4h HS
MU201_0h_1 0h CT
MU201_0h_2 0h CT
MU201_0h_3 0h CT
MU201_2h_1 2h CT
MU201_2h_2 2h CT
MU201_2h_3 2h CT
MU201_4h_1 4h CT
MU201_4h_2 4h CT
MU201_4h_3 4h CT
MU235_0h_1 0h HT
MU235_0h_2 0h HT
MU235_0h_3 0h HT
MU235_2h_1 2h HT
MU235_2h_2 2h HT
MU235_2h_3 2h HT
MU235_4h_1 4h HT
MU235_4h_2 4h HT
MU235_4h_3 4h HT
MU244_0h_1 0h HT
MU244_0h_2 0h HT
MU244_0h_3 0h HT
MU244_2h_1 2h HT
MU244_2h_2 2h HT
MU244_2h_3 2h HT
MU244_4h_1 4h HT
MU244_4h_2 4h HT
MU244_4h_3 4h HT
MU251_0h_1 0h HS
MU251_0h_2 0h HS
MU251_0h_3 0h HS
MU251_2h_1 2h HS
MU251_2h_2 2h HS
MU251_2h_3 2h HS
MU251_4h_1 4h HS
MU251_4h_2 4h HS
MU251_4h_3 4h HS
DESeq2 Script ass follwing
DDS <- DESeqDataSetFromMatrix(countData = CountData,
colData = colData,
design= ~ group + time + group:time )
keep <- rowSums(counts(DDS)) >= 10
DDS <- DDS[keep,]
DDS
DDS$time <- relevel(DDS$time, ref = "0h")
DDS$group <- relevel(DDS$group, ref = "CT")
DDS = DESeq(DDS)
resHS_0h=results(DDS,contrast=list("group_HS_vs_CT"))
head(resHS_0h)
summary(resHS_0h)
res_HS_0h = as.data.frame(resHS_0h)
Hs_0h = res_HS_0h[(res_HS_0h$padj <0.05) & (res_HS_0h$baseMean >50) & (abs(res_HS_0h$log2FoldChange)>1),]
resHS_2h=results(DDS,contrast=list(c("time_2h_vs_0h","groupHS.time2h")))
head(resHS_2h)
summary(resHS_2h)
res_HS_2h = as.data.frame(resHS_2h)
Hs_2h = res_HS_2h[(res_HS_2h$padj <0.05) & (res_HS_2h$baseMean >50) & (abs(res_HS_2h$log2FoldChange)>1),]
resHS_4h=results(DDS,contrast=list(c("time_4h_vs_0h","groupHS.time4h")))
head(resHS_4h)
summary(resHS_4h)
res_HS_4h = as.data.frame(resHS_4h)
Hs_4h = res_HS_4h[(res_HS_4h$padj <0.05) & (res_HS_4h$baseMean >50) & (abs(res_HS_4h$log2FoldChange)>1),]
resHT_0h=results(DDS,contrast=list("group_HT_vs_CT"))
head(resHT_0h)
summary(resHT_0h)
res_HT_0h = as.data.frame(resHT_0h)
Ht_0h = res_HT_0h[(res_HT_0h$padj <0.05) & (res_HT_0h$baseMean >50) & (abs(res_HT_0h$log2FoldChange)>1),]
resHT_2h=results(DDS,contrast=list(c("time_2h_vs_0h","groupHT.time2h")))
head(resHT_2h)
summary(resHT_2h)
res_HT_2h = as.data.frame(resHS_2h)
Ht_2h = res_HT_2h[(res_HT_2h$padj <0.05) & (res_HT_2h$baseMean >50) & (abs(res_HT_2h$log2FoldChange)>1),]
resHT_4h=results(DDS,contrast=list(c("time_4h_vs_0h","groupHT.time4h")))
head(resHT_4h)
summary(resHT_4h)
res_HT_4h = as.data.frame(resHT_4h)
Ht_4h = res_HT_4h[(res_HT_4h$padj <0.05) & (res_HT_4h$baseMean >50) & (abs(res_HT_4h$log2FoldChange)>1),]
But while I extract genes from two groups as an example for 4h up and down-regulated genes. I suspect there was no such difference. Like same type of genes up-regulated in HS and HT
Example table bellow
# HS genes with basemean, lfc and pvalue
Gene_ID basemean lfc pvalue padj
LOC_Os01g04360.1 35927.7676492306 13.269454923308 5.96868498666644E-99 3.94304235484021E-96
LOC_Os01g04370.1 139637.319907929 13.4582530102767 1.38429446664833E-82 6.1520562996882E-80
LOC_Os01g04380.1 32939.0908584791 16.927448436553 2.74264559598584E-68 8.37981078783523E-66
# HT genes with basemean, lfc and pvalue
Gene_ID basemean lfc pvalue padj
LOC_Os01g04360.1 35927.7676492306 10.7995523770545 1.1096536703974E-79 7.14303984495556E-77
LOC_Os01g04370.1 139637.319907929 11.3647008801624 1.02512039214524E-63 4.02119491325098E-61
LOC_Os01g04380.1 32939.0908584791 8.3083189329929 1.08555613708649E-61 3.78512316966061E-59
There was no significant difference between them.
Can you please help me in this regard? Any help much appreciated.
Thanks for your kind reply. Those genes belong to HSP20, Suppose to have high expression under HT but if we look into the table its has high lfc under HS. Is any other way I can play with it to get a good result? I am following the DESeq2 manuall to get the best support.