Hi all,
I am interested in differential transcript expression in two conditions (fusion-positive vs fusion-negative) from two different datasets. I quantified using Salmon and imported using tximeta, following the swish vignette. I run swish using tumor subtype as variable of interest and the two batches as covariate (see code).
se <- tximeta(metadata, useHub = FALSE)
se <- scaleInfReps(se)
y <- se
y <- y[,y$subtype %in% c("PAX-FOXO","None")]
y$subtype <- factor(y$subtype, levels=c("None","PAX-FOXO"))
y$source <- factor(y$source, levels = c("inhouse","stjude"))
y <- labelKeep(y)
y <- y[mcols(y)$keep,]
y <- swish(y, x = "subtype", cov = "source")
However, when I check the output, the column for Log2FC is empty.
> head(mcols(y))
DataFrame with 6 rows and 10 columns
tx_id gene_id tx_name log10mean keep stat log2FC pvalue locfdr qvalue
<integer> <CharacterList> <character> <numeric> <logical> <numeric> <numeric> <numeric> <numeric> <numeric>
ENST00000456328 1 ENSG00000223972 ENST00000456328 1.073122 TRUE 0.718018 NA 0.3084146 1.000000 0.644582
ENST00000488147 10811 ENSG00000227232 ENST00000488147 2.382419 TRUE -1.596396 NA 0.0259436 0.415494 0.190842
MSTRG.12.28 3 MSTRG.12 MSTRG.12.28 2.330690 TRUE 1.676577 NA 0.0194736 0.364477 0.162842
ENST00000417324 10813 ENSG00000237613 ENST00000417324 0.643785 TRUE 1.072973 NA 0.1309100 0.840882 0.437874
ENST00000466430 10815 ENSG00000238009 ENST00000466430 1.480677 TRUE 0.422523 NA 0.5464961 1.000000 0.813149
ENST00000495576 10816 ENSG00000239945 ENST00000495576 0.876378 TRUE -0.243243 NA 0.7275535 1.000000 0.902662
I would like to include differences in Log2FC to look for biological differences, so I was wondering why it's not in the output.
> sessionInfo()
R version 4.2.0 (2022-04-22)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 20.04.4 LTS
Matrix products: default
BLAS: /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3
LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/liblapack.so.3
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8 LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] grid stats4 stats graphics grDevices utils datasets methods base
other attached packages:
[1] circlize_0.4.15 ComplexHeatmap_2.12.0 reshape2_1.4.4 GenomicFeatures_1.48.3
[5] AnnotationDbi_1.58.0 PCAtools_2.8.0 ggrepel_0.9.1 ggplot2_3.3.6
[9] RColorBrewer_1.1-3 uwot_0.1.11 Matrix_1.4-1 tximeta_1.14.1
[13] tximport_1.24.0 rtracklayer_1.56.1 DESeq2_1.36.0 SummarizedExperiment_1.26.1
[17] Biobase_2.56.0 MatrixGenerics_1.8.1 matrixStats_0.62.0 GenomicRanges_1.48.0
[21] GenomeInfoDb_1.32.2 IRanges_2.30.0 S4Vectors_0.34.0 BiocGenerics_0.42.0
[25] magrittr_2.0.3 dplyr_1.0.9 fishpond_2.2.0
Thank you in advance for the help!
I also have a different cohort where I want to test DTE for. For some reason, the log2fold change is provided here.
Maybe it has to do with too little samples per group? Just a guess.