Differential Expression Analysis
1
0
Entering edit mode
@paulelliot1994-12566
Last seen 6.5 years ago

If it's not too much trouble, can someone tell me as to how to perform differential expression analysis on this Illumina microarray data that I got from GEO dataset (GSE48624) and get the list of upregulated and downregulated genes.Thank You !

differential gene expression microarray lumi illumina • 1.7k views
ADD COMMENT
2
Entering edit mode
@james-w-macdonald-5106
Last seen 2 hours ago
United States
> library(GEOquery)
> library(limma)
> z <- getGEO("GSE48624")[[1]]
<snip>
> names(pData(z))
 [1] "title"                   "geo_accession"          
 [3] "status"                  "submission_date"        
 [5] "last_update_date"        "type"                   
 [7] "channel_count"           "source_name_ch1"        
 [9] "organism_ch1"            "characteristics_ch1"    
[11] "characteristics_ch1.1"   "characteristics_ch1.2"  
[13] "molecule_ch1"            "extract_protocol_ch1"   
[15] "label_ch1"               "label_protocol_ch1"     
[17] "taxid_ch1"               "hyb_protocol"           
[19] "scan_protocol"           "description"            
[21] "data_processing"         "platform_id"            
[23] "contact_name"            "contact_email"          
[25] "contact_phone"           "contact_department"     
[27] "contact_institute"       "contact_address"        
[29] "contact_city"            "contact_zip/postal_code"
[31] "contact_country"         "supplementary_file"     
[33] "data_row_count"         

## What are the characteristics of these samples?
> apply(pData(z)[,10:12], 2, table)
$characteristics_ch1

tissue: peripheral blood
                      96

$characteristics_ch1.1

ethnicity: Finnish
                96

$characteristics_ch1.2

treatment: baseline    treatment: music
                 47                  49
## the only phenotype that differs is the music/baseline treatment
## subset the featureData to something tractable - most of this stuff isn't of interest

> names(fData(z))
 [1] "ID"                    "Species"               "Source"               
 [4] "Search_Key"            "Transcript"            "ILMN_Gene"            
 [7] "Source_Reference_ID"   "RefSeq_ID"             "Unigene_ID"           
[10] "Entrez_Gene_ID"        "GI"                    "Accession"            
[13] "Symbol"                "Protein_Product"       "Probe_Id"             
[16] "Array_Address_Id"      "Probe_Type"            "Probe_Start"          
[19] "SEQUENCE"              "Chromosome"            "Probe_Chr_Orientation"
[22] "Probe_Coordinates"     "Cytoband"              "Definition"           
[25] "Ontology_Component"    "Ontology_Process"      "Ontology_Function"    
[28] "Synonyms"              "Obsolete_Probe_Id"     "GB_ACC"               
> fData(z) <- fData(z)[,c(1,10,13)]

## fit model
> design <- model.matrix(~pData(z)[,12])

> fit <- lmFit(z, design)
> fit2 <- eBayes(fit)

> topTable(fit2,2)
                       ID Entrez_Gene_ID    Symbol       logFC  AveExpr
ILMN_3236932 ILMN_3236932         353133     LCE1C -0.14815313 6.721839
ILMN_3239103 ILMN_3239103         340357 LOC340357 -0.17065860 7.381326
ILMN_1721415 ILMN_1721415           9425      CDYL  0.09895831 6.055042
ILMN_1812702 ILMN_1812702           6495      SIX1  0.09901370 6.172894
ILMN_1675433 ILMN_1675433         646914 LOC646914  0.13058373 7.080659
ILMN_1693001 ILMN_1693001         642607 LOC642607  0.12772460 6.874270
ILMN_1681221 ILMN_1681221          84904  C9orf100 -0.13552653 6.986433
ILMN_1731707 ILMN_1731707         441601 LOC441601 -0.14621298 6.817454
ILMN_1853705 ILMN_1853705             NA            0.14548676 6.773012
ILMN_1787540 ILMN_1787540         122183  FLJ40296 -0.12145411 6.844140
                     t      P.Value adj.P.Val           B
ILMN_3236932 -4.009277 0.0001169953 0.9997305  0.79210743
ILMN_3239103 -3.996187 0.0001227126 0.9997305  0.75411573
ILMN_1721415  3.911712 0.0001665612 0.9997305  0.51099215
ILMN_1812702  3.746906 0.0002986704 0.9997305  0.04713268
ILMN_1675433  3.657310 0.0004074674 0.9997305 -0.19905602
ILMN_1693001  3.621101 0.0004613228 0.9997305 -0.29732324
ILMN_1681221 -3.599539 0.0004965258 0.9997305 -0.35550123
ILMN_1731707 -3.591168 0.0005108654 0.9997305 -0.37801822
ILMN_1853705  3.584049 0.0005233669 0.9997305 -0.39713584
ILMN_1787540 -3.529596 0.0006290267 0.9997305 -0.54244947
>

There's no evidence to indicate that listening to classical music for 20 minutes has an effect on the expression of any genes in white blood cells.

ADD COMMENT

Login before adding your answer.

Traffic: 773 users visited in the last hour
Help About
FAQ
Access RSS
API
Stats

Use of this site constitutes acceptance of our User Agreement and Privacy Policy.

Powered by the version 2.3.6