The support.bioconductor.org editor has been updated to markdown! Please see more info at: Tutorial: Updated Support Site Editor

Question: clarification about bumphunter value output
0
gravatar for src3
11 months ago by
src30
src30 wrote:

How can the values in value column of the bumphunter output be greater than 1 or less than 0 if beta values range from 0 to 1? Is there a log transformation taking place at some point? 

Thank you!

minfi bumphunter • 211 views
ADD COMMENTlink modified 11 months ago by Yuan Tian50 • written 11 months ago by src30
Answer: clarification about bumphunter value output
0
gravatar for James W. MacDonald
11 months ago by
United States
James W. MacDonald49k wrote:

Ideally you would be using M-values rather than beta values, as they are more amenable to analysis using tools like lmFit. In which case they range from -Inf to Inf (hypothetically), and it wouldn't be surprising at all to have a beta larger than 1 or less than zero.

But your question has more to do with how bumphunter works in a statistical sense, which is ideally something you would understand before using the software. You would be well served to read the bumphunter vignette as well as the papers that describe the method.

 

ADD COMMENTlink written 11 months ago by James W. MacDonald49k
Answer: clarification about bumphunter value output
0
gravatar for Yuan Tian
11 months ago by
Yuan Tian50
Shanghai Institute for Biology Science, Shanghai, China
Yuan Tian50 wrote:

Hello:

I remember bumphunter use coefficient or t-statistic to calculate DMRs, not beta value. Thus the value you can see in the output is not beta value I think, it's a smoothed coef. 

And you are right that seems it's pretty hard to find clear explanations for bumphunter output. When I code ChAMP, I basically read every line of bumphunter to understand how it works (because users ask me via email, I am maintaining ChAMP), below is my explanation:

1)      value:  Mean value of all smooth coef in one candidate bump.

2)      L: Numbers of CpGs contained in candidate bump.

3)      p.value:  Proportion of random bumps show most CpGs and higher mean value then this DMR.

4)      fwer:  Proportion that a random run would generate one such DMR shows most CpGs and higher mean value.

5)      p.valueArea:  Proportion of random bumps show higher abs sum value then this DMR.

6)      fwerArea: Proportion that a random run would generate one such DMR show higher abs sum value.

Best

Yuan Tian

ADD COMMENTlink written 11 months ago by Yuan Tian50
Please log in to add an answer.

Help
Access

Use of this site constitutes acceptance of our User Agreement and Privacy Policy.
Powered by Biostar version 16.09
Traffic: 373 users visited in the last hour