Entering edit mode
sharmila.ahmad
•
0
@sharmilaahmad-19742
Last seen 6.1 years ago
Hi and good day,
Can anyone explain to me what should I do if got the following results after running DeSeq? What should I do with the outliers and low counts? I have had filtered the low count <5 before running the analysis.
### result for Sex (F as reference level)
res_Sex <-results(dds_full, name="Sex_M_vs_F")
summary(res_Sex)
out of 15895 with nonzero total read count
adjusted p-value < 0.1
LFC > 0 (up) : 893, 5.6%
LFC < 0 (down) : 1550, 9.8%
outliers [1] : 19, 0.12%
low counts [2] : 309, 1.9%
(mean count < 7)
[1] see 'cooksCutoff' argument of ?results
[2] see 'independentFiltering' argument of ?results
Thank you in advance.
Best, Mila
Thank you for your explanation.
Best, Mila
Hi Michael,
I have another few questions to ask;
1) regarding filtering the low gene counts and outliers using NOISeq before running the DESeq. It is necessary or recommended to do that? If yes, does it makes any difference since the DESeq itself will filter the outliers and low counts genes right?
2) I don't understand the principle of llfctreshold. As I understood by setting up the lfctreshold will make the stat/results more stringent and there is no a single value that can be used as a based or reference.
Again, thank you.
Best, Mila
It’s not necessary to filter before running DESeq2. You can filter out low count genes for efficiency, genes which for example have counts less than 10 for nearly all samples. But it’s not necessary. See vignette for details on the automatic filtering.
The paper and vignette describe the threshold in detail.