Hi,
I wanted to replicate the GO analysis done thru' (http://geneontology.org/), but using R/Bioconductor. For the 'original' GO analysis, I just copy and pasted my genes on the website, used all defaults (i.e. 'biological process', 'Homo Sapiens', panther.db), and click on 'Launch'. This resulted in a set of significant GO terms.
I am now trying to replicate this anaylsis with R/Bioconductor with topGO package, but I get an error. My code is:
library(topGO)
library(PANTHER.db)
pthOrganisms(PANTHER.db) <- "HUMAN"
PANTHER.db
allpanther <- keys(PANTHER.db,keytype="ENTREZ")
## myentrezGenes - my genes of interest
idx <- allpanther %in% myentrezGenes
genesidx <- factor(as.integer(aidx))
names(genesidx) <- allpanther
tgd <- new( "topGOdata", ontology="BP", allGenes = genesidx, nodeSize=5,
             annot=annFUN.org, mapping="PANTHER.db")
> Building most specific GOs .....
Error in h(simpleError(msg, call)) : 
  error in evaluating the argument 'conn' in selecting a method for function 'dbGetQuery': object 'PANTHER_dbconn' not found
My questions:
- Is this the best method to try to replicate results I get from the GO website (http://geneontology.org/)? Or is there an API that I can use to programmatically get the results? Or some other bioconductor package? 
- How can I rectify my code? 
Thanks for your help!!
My sessioninfo is:
R version 4.0.2 (2020-06-22)
Platform: x86_64-apple-darwin17.0 (64-bit)
Running under: macOS High Sierra 10.13.6
Matrix products: default
BLAS:   /System/Library/Frameworks/Accelerate.framework/Versions/A/Frameworks/vecLib.framework/Versions/A/libBLAS.dylib
LAPACK: /Library/Frameworks/R.framework/Versions/4.0/Resources/lib/libRlapack.dylib
locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
attached base packages:
[1] stats4    parallel  stats     graphics  grDevices utils     datasets  methods  
[9] base     
other attached packages:
 [1] PANTHER.db_1.0.10    RSQLite_2.2.0        AnnotationHub_2.20.2 BiocFileCache_1.12.1
 [5] dbplyr_1.4.4         org.Hs.eg.db_3.11.4  topGO_2.40.0         SparseM_1.78        
 [9] GO.db_3.11.4         AnnotationDbi_1.50.3 IRanges_2.22.2       S4Vectors_0.26.1    
[13] Biobase_2.48.0       graph_1.66.0         BiocGenerics_0.34.0 
loaded via a namespace (and not attached):
 [1] Rcpp_1.0.5                    later_1.1.0.1                
 [3] BiocManager_1.30.10           compiler_4.0.2               
 [5] pillar_1.4.6                  tools_4.0.2                  
 [7] digest_0.6.25                 bit_4.0.4                    
 [9] memoise_1.1.0                 tibble_3.0.3                 
[11] lifecycle_0.2.0               lattice_0.20-41              
[13] pkgconfig_2.0.3               rlang_0.4.7                  
[15] shiny_1.5.0                   DBI_1.1.0                    
[17] rstudioapi_0.11               yaml_2.2.1                   
[19] curl_4.3                      fastmap_1.0.1                
[21] httr_1.4.2                    dplyr_1.0.2                  
[23] rappdirs_0.3.1                generics_0.0.2               
[25] vctrs_0.3.4                   bit64_4.0.5                  
[27] grid_4.0.2                    tidyselect_1.1.0             
[29] glue_1.4.2                    R6_2.4.1                     
[31] purrr_0.3.4                   blob_1.2.1                   
[33] magrittr_1.5                  promises_1.1.1               
[35] htmltools_0.5.0               matrixStats_0.56.0           
[37] ellipsis_0.3.1                assertthat_0.2.1             
[39] xtable_1.8-4                  mime_0.9                     
[41] interactiveDisplayBase_1.26.3 httpuv_1.5.4                 
[43] BiocVersion_3.11.1            crayon_1.3.4

if you provide a function to
geneSelit will not be used (see this other questions: https://support.bioconductor.org/p/91273/, https://support.bioconductor.org/p/105667/#105733)The geneSel argument isn't applicable if you are doing a KS test, because that uses the scores directly instead of generating a contingency table. Try your example using the fisher test.