I am not sure what the right protocol is for reporting bugs in ExperimentHub, but here we go. It appears that the dataset ExperimentHub()[["EH359"]] (apparently a.k.a. curatedMetagenomicData::ZellerG_2014.marker_abundance) is an ExpressionSet whose exprs is a matrix of characters. The matrix can be converted to numeric, and all elements seem to represent legitimate numbers, but I wonder whether this should not be fixed upstream.
library("ExperimentHub")
eh = ExperimentHub()
# snapshotDate(): 2016-10-26
zeller = eh[["EH359"]]
# see ?curatedMetagenomicData and browseVignettes('curatedMetagenomicData') for documentation
# loading from cache ‘/Users/huber//.ExperimentHub/359’
str(exprs(zeller))
# chr [1:130272, 1:156] "1.8115942029" "17.0542635659" "55.5555555556" ...
# - attr(*, "dimnames")=List of 2
# ..$ : chr [1:130272] "gi|333126069|ref|NZ_AEMJ01000490.1|:c656-105" #"gi|381149847|ref|NZ_JH604847.1|:635-1279" "gi|331001572|ref|NZ_GL883724.1|:311-544" "gi|381150020|ref|NZ_JH605020.1|:16763-17575" ...
# ..$ : chr [1:156] "CCIS00146684ST-4-0" "CCIS00281083ST-3-0" "CCIS02124300ST-4-0" "CCIS02379307ST-4-0" ...
nonum = is.na(as.numeric(exprs(zeller)))
table(nonum)
#nonum
# FALSE
#20322432
sessionInfo()
R version 3.3.1 (2016-06-21)
Platform: x86_64-apple-darwin13.4.0 (64-bit)
Running under: OS X 10.12.1 (Sierra)
locale:
[1] C/UTF-8/C/C/C/C
attached base packages:
[1] stats4 parallel stats graphics grDevices utils datasets
[8] methods base
other attached packages:
[1] curatedMetagenomicData_1.0.0 phyloseq_1.18.0
[3] magrittr_1.5 ExperimentHubData_1.0.0
[5] AnnotationHubData_1.4.0 futile.logger_1.4.3
[7] GenomicRanges_1.26.1 GenomeInfoDb_1.10.0
[9] IRanges_2.8.0 S4Vectors_0.12.0
[11] Biobase_2.34.0 ExperimentHub_1.0.0
[13] AnnotationHub_2.6.0 BiocGenerics_0.20.0
[15] fortunes_1.5-3
loaded via a namespace (and not attached):
[1] httr_1.2.1 splines_3.3.1
[3] jsonlite_1.1 foreach_1.4.3
[5] shiny_0.14.2 interactiveDisplayBase_1.12.0
[7] RBGL_1.50.0 Rsamtools_1.26.1
[9] RSQLite_1.0.0 lattice_0.20-34
[11] RUnit_0.4.31 chron_2.3-47
[13] digest_0.6.10 XVector_0.14.0
[15] colorspace_1.2-7 htmltools_0.3.5
[17] httpuv_1.3.3 Matrix_1.2-7.1
[19] plyr_1.8.4 OrganismDbi_1.16.0
[21] GEOquery_2.40.0 XML_3.98-1.4
[23] biomaRt_2.30.0 rBiopaxParser_2.14.0
[25] zlibbioc_1.20.0 xtable_1.8-2
[27] scales_0.4.0 getopt_1.20.0
[29] optparse_1.3.2 BiocParallel_1.8.1
[31] biocViews_1.42.0 mgcv_1.8-15
[33] ggplot2_2.1.0 SummarizedExperiment_1.4.0
[35] GenomicFeatures_1.26.0 survival_2.40-1
[37] mime_0.5 MASS_7.3-45
[39] nlme_3.1-128 xml2_1.0.0
[41] vegan_2.4-1 graph_1.52.0
[43] BiocInstaller_1.24.0 tools_3.3.1
[45] data.table_1.9.6 stringr_1.1.0
[47] munsell_0.4.3 cluster_2.0.5
[49] AnnotationDbi_1.36.0 lambda.r_1.1.9
[51] Biostrings_2.42.0 ade4_1.7-4
[53] rhdf5_2.18.0 grid_3.3.1
[55] RCurl_1.95-4.8 iterators_1.0.8
[57] biomformat_1.2.0 AnnotationForge_1.16.0
[59] igraph_1.0.1 bitops_1.0-6
[61] multtest_2.30.0 gtable_0.2.0
[63] codetools_0.2-15 DBI_0.5-1
[65] curl_2.2 reshape2_1.4.2
[67] R6_2.2.0 GenomicAlignments_1.10.0
[69] rtracklayer_1.34.1 futile.options_1.0.0
[71] permute_0.9-4 ape_3.5
[73] stringi_1.1.2 Rcpp_0.12.7
[75] BiocCheck_1.10.0
