Entering edit mode
I have a strange error, that I don't think is related to the input data, about dtype('float64') to dtype('int64') conversion. Is it possible that from the A2 python connection something strange is happening here?
Thanks a lot
Offending code
library(basilisk)
metacells_env <- BasiliskEnvironment(
envname = "metacells_env",
pkgname = "HPCell",
packages = c("numpy==1.24.3"), # Upgrade numpy to a version compatible with Python 3.10
pip = c("metacells==0.9.4", "anndata==0.10.9") # Use pip to install metacells
)
basiliskStart(metacells_env)
mc <- reticulate::import("metacells", delay_load = TRUE)
np <- reticulate::import("numpy", delay_load = TRUE)
my_anndata = anndata$AnnData(X = matrix(as.integer(rpois(200, lambda = 5)), nrow = 20, ncol = 10) )
mc$pl$divide_and_conquer_pipeline(my_anndata, random_seed=123456)
# ERROR
set unnamed.var[selected_gene]: * -> False
set unnamed.var[rare_gene]: 0 true (0%) out of 36412 bools
set unnamed.var[rare_gene_module]: 36412 int32 elements with all outliers (100%)
set unnamed.obs[cells_rare_gene_module]: 4860 int32 elements with all outliers (100%)
set unnamed.obs[rare_cell]: 0 true (0%) out of 4860 bools
Error in py_call_impl(callable, call_args$unnamed, call_args$named) :
TypeError: Cannot cast scalar from dtype('float64') to dtype('int64') according to the rule 'safe'
sessionInfo()
R version 4.4.1 (2024-06-14)
Platform: x86_64-pc-linux-gnu
Running under: Red Hat Enterprise Linux 9.4 (Plow)
Matrix products: default
BLAS: /stornext/System/data/software/rhel/9/base/tools/R/4.4.1/lib64/R/lib/libRblas.so
LAPACK: /home/users/allstaff/mangiola.s/.cache/R/basilisk/1.16.0/HPCell/0.3.7/metacells_env/lib/libmkl_rt.so.1; LAPACK version 3.9.0
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8 LC_MONETARY=en_US.UTF-8
[6] LC_MESSAGES=en_US.UTF-8 LC_PAPER=en_US.UTF-8 LC_NAME=C LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
time zone: Australia/Melbourne
tzcode source: system (glibc)
attached base packages:
[1] stats4 stats graphics grDevices utils datasets methods base
other attached packages:
[1] SummarizedExperiment_1.34.0 Biobase_2.64.0 GenomicRanges_1.56.1 GenomeInfoDb_1.40.1 IRanges_2.38.1
[6] S4Vectors_0.42.1 BiocGenerics_0.50.0 MatrixGenerics_1.16.0 matrixStats_1.4.1 basilisk_1.16.0
[11] reticulate_1.39.0 CuratedAtlasQueryR_1.4.7 crew.cluster_0.3.2 HPCell_0.3.7 shinyBS_0.61.1
[16] stringr_1.5.1 purrr_1.0.2 tibble_3.2.1 glue_1.8.0 targets_1.8.0.9003
[21] duckdb_1.0.0-2 DBI_1.2.3 dplyr_1.1.4 arrow_17.0.0.1
loaded via a namespace (and not attached):
[1] igraph_2.1.1 ica_1.0-3 plotly_4.10.4 SingleR_2.6.0
[5] scater_1.32.1 zlibbioc_1.50.0 tidyselect_1.2.1 bit_4.5.0
[9] lattice_0.22-6 rjson_0.2.23 blob_1.2.4 S4Arrays_1.4.1
[13] parallel_4.4.1 seqLogo_1.70.0 png_0.1-8 cli_3.6.3
[17] ProtGenerics_1.36.0 goftest_1.2-3 gargle_1.5.2 BiocIO_1.14.0
[21] bluster_1.14.0 basilisk.utils_1.16.0 BiocNeighbors_1.22.0 tarchetypes_0.10.0
[25] Signac_1.14.0 uwot_0.2.2 curl_5.2.3 mime_0.12
[29] leiden_0.4.3.1 V8_5.0.0 stringi_1.8.4 ids_1.0.1
[33] backports_1.5.0 XML_3.99-0.17 httpuv_1.6.15 AnnotationDbi_1.66.0
[37] magrittr_2.0.3 rappdirs_0.3.3 splines_4.4.1 RcppRoll_0.3.1
[41] nanonext_1.3.0 RApiSerialize_0.1.4 DT_0.33 sctransform_0.4.1
[45] ggbeeswarm_0.7.2 HDF5Array_1.32.1 withr_3.0.1 rprojroot_2.0.4
[49] xgboost_1.7.8.1 tidySummarizedExperiment_1.14.0 lmtest_0.9-40 BiocManager_1.30.25
[53] rtracklayer_1.64.0 htmlwidgets_1.6.4 fs_1.6.4 biomaRt_2.60.1
[57] SingleCellExperiment_1.26.0 ggrepel_0.9.6 SparseArray_1.4.8 cellranger_1.1.0
[61] tidyseurat_0.8.1 annotate_1.82.0 zoo_1.8-12 JASPAR2020_0.99.10
[65] XVector_0.44.0 knitr_1.48 TFBSTools_1.42.0 UCSC.utils_1.0.0
[69] TFMPvalue_0.0.9 secretbase_1.0.3 fansi_1.0.6 patchwork_1.3.0
[73] caTools_1.18.3 grid_4.4.1 data.table_1.16.2 rhdf5_2.48.0
[77] pwalign_1.0.0 R.oo_1.26.0 poweRlaw_0.80.0 RSpectra_0.16-2
[81] irlba_2.3.5.1 alabaster.schemas_1.4.0 fastDummies_1.7.4 ellipsis_0.3.2
[85] base64url_1.4 lazyeval_0.2.2 yaml_2.3.10 tidySingleCellExperiment_1.15.5
[89] survival_3.7-0 scattermore_1.2 BiocVersion_3.19.1 crayon_1.5.3
[93] mirai_1.3.0 RcppAnnoy_0.0.22 RColorBrewer_1.1-3 tidyr_1.3.1
[97] progressr_0.14.0 later_1.3.2 tidybulk_1.17.3 ggridges_0.5.6
[101] codetools_0.2-20 Seurat_5.1.0 KEGGREST_1.44.1 Rtsne_0.17
[105] limma_3.60.4 Rsamtools_2.20.0 filelock_1.0.3 pkgconfig_2.0.3
[109] xml2_1.3.6 spatstat.univar_3.0-1 GenomicAlignments_1.40.0 alabaster.base_1.4.2
[113] spatstat.sparse_3.1-0 BSgenome_1.72.0 viridisLite_0.4.2 xtable_1.8-4
[117] plyr_1.8.9 httr_1.4.7 tools_4.4.1 globals_0.16.3
[121] SeuratObject_5.0.2 pkgbuild_1.4.4 checkmate_2.3.2 beeswarm_0.4.0
[125] broom_1.0.7 nlme_3.1-166 loo_2.8.0 ExperimentHub_2.12.0
[129] dbplyr_2.5.0 hdf5r_1.3.11 shinyjs_2.1.0 lme4_1.1-35.5
[133] assertthat_0.2.1 digest_0.6.37 Matrix_1.7-0 dir.expiry_1.12.0
[137] farver_2.1.2 tzdb_0.4.0 AnnotationFilter_1.28.0 reshape2_1.4.4
[141] viridis_0.6.5 DirichletMultinomial_1.46.0 cachem_1.1.0 BiocFileCache_2.12.0
[145] polyclip_1.10-7 generics_0.1.3 Biostrings_2.72.1 googledrive_2.1.1
[149] presto_1.0.0 parallelly_1.38.0 statmod_1.5.0 here_1.0.1
[153] RcppHNSW_0.6.0 ScaledMatrix_1.12.0 minqa_1.2.8 pbapply_1.7-2
[157] httr2_1.0.3 job_0.3.1 spam_2.11-0 dqrng_0.4.1
[161] utf8_1.2.4 scDblFinder_1.18.0 StanHeaders_2.32.10 gtools_3.9.5
[165] preprocessCore_1.66.0 alabaster.se_1.4.1 crew_0.10.0 gridExtra_2.3
[169] shiny_1.9.1 GenomeInfoDbData_1.2.12 R.utils_2.12.3 rhdf5filters_1.16.0
[173] RCurl_1.98-1.16 memoise_2.0.1 scales_1.3.0 R.methodsS3_1.8.2
[177] googlesheets4_1.1.1 gypsum_1.0.1 future_1.34.0 RANN_2.6.2
[181] stringfish_0.16.0 spatstat.data_3.1-2 rstudioapi_0.16.0 zellkonverter_1.14.1
[185] cluster_2.1.6 QuickJSR_1.3.1 spatstat.utils_3.1-0 hms_1.1.3
[189] fitdistrplus_1.2-1 munsell_0.5.1 cowplot_1.1.3 colorspace_2.1-1
[193] rlang_1.1.4 DelayedMatrixStats_1.26.0 sparseMatrixStats_1.16.0 dotCall64_1.2
[197] shinydashboard_0.7.2 scuttle_1.14.0 xfun_0.48 alabaster.matrix_1.4.2
[201] CNEr_1.40.0 abind_1.4-8 EnsDb.Hsapiens.v86_2.99.0 rstan_2.32.6
[205] celldex_1.14.0 Rhdf5lib_1.26.0 ggplot2_3.5.1 readr_2.1.5
[209] bitops_1.0-9 ps_1.8.0 promises_1.3.0 inline_0.3.19
[213] RSQLite_2.3.7 getip_0.1-4 DelayedArray_0.30.1 GO.db_3.19.1
[217] compiler_4.4.1 alabaster.ranges_1.4.2 prettyunits_1.2.0 boot_1.3-30
[221] beachmat_2.20.0 ttservice_0.4.1 listenv_0.9.1 BSgenome.Hsapiens.UCSC.hg38_1.4.5
[225] Rcpp_1.0.13 AnnotationHub_3.12.0 edgeR_4.2.1 BiocSingular_1.20.0
[229] tensor_1.5 autometric_0.0.5 qs_0.27.2 MASS_7.3-61
[233] progress_1.2.3 uuid_1.2-1 BiocParallel_1.38.0 ggupset_0.4.0
[237] spatstat.random_3.3-2 R6_2.5.1 Azimuth_0.5.0 fastmap_1.2.0
[241] fastmatch_1.1-4 vipor_0.4.7 ensembldb_2.28.1 ROCR_1.0-11
[245] SeuratDisk_0.0.0.9021 rsvd_1.0.5 gtable_0.3.5 KernSmooth_2.23-24
[249] miniUI_0.1.1.1 deldir_2.0-4 htmltools_0.5.8.1 RcppParallel_5.1.9
[253] bit64_4.5.2 spatstat.explore_3.3-2 lifecycle_1.0.4 processx_3.8.4
[257] nloptr_2.1.1 callr_3.7.6 restfulr_0.0.15 vctrs_0.6.5
[261] spatstat.geom_3.3-3 scran_1.32.0 sp_2.1-4 SeuratData_0.2.2.9001
[265] future.apply_1.11.2 pracma_2.4.4 pillar_1.9.0 GenomicFeatures_1.56.0
[269] DropletUtils_1.24.0 metapod_1.12.0 locfit_1.5-9.10 jsonlite_1.8.9
For the general audience, reticulate / python (which basilisk depends on / wraps) requires explicit declaration of integers, so one needs indeed
123456L
rather than123456
, mind theL
for long integer.