Question: Problem with using GDC_queryMaf()
gravatar for d r
16 months ago by
d r150
d r150 wrote:


I am trying to use the TCGAbiolinks package to extract mutation data for several types of tumors I am interested in.

I am using GDCquery_Maf, using exactly the syntax indicated in the help file:

acc.maf <- GDCquery_Maf("ACC")

However I then get the error:

Error in missing(tumor) : 'missing' can only be used for arguments

The maf file is actually written in my working directory, but for some reason is not imported into the R workspace. Also when I'm using save.csv=TRUE, no csv file is created.

I have tried this with several tumor types, and always got the same error.

Any idea what may be causing this?

Thanks in advacne

Dolev Rahat


> sessionInfo()
R version 3.3.2 (2016-10-31)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 14.04.5 LTS

 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C               LC_TIME=en_US.UTF-8       
 [7] LC_PAPER=he_IL.UTF-8       LC_NAME=C                  LC_ADDRESS=C              

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] TCGA2STAT_1.2        BiocInstaller_1.22.3 TCGAbiolinks_2.0.13  curl_2.3            

loaded via a namespace (and not attached):
  [1] TH.data_1.0-8                           colorspace_1.3-2                       
  [3] rjson_0.2.15                            hwriter_1.3.2                          
  [5] class_7.3-14                            modeltools_0.2-21                      
  [7] mclust_5.2.2                            circlize_0.3.9                         
  [9] XVector_0.12.1                          GenomicRanges_1.24.3                   
 [11] GlobalOptions_0.0.10                    parmigene_1.0.2                        
 [13] matlab_1.0.2                            hexbin_1.27.1                          
 [15] affyio_1.42.0                           ggrepel_0.6.5                          
 [17] flexmix_2.3-13                          AnnotationDbi_1.34.4                   
 [19] mvtnorm_1.0-5                           xml2_1.1.1                             
 [21] coin_1.1-3                              codetools_0.2-15                       
 [23] splines_3.3.2                           R.methodsS3_1.7.1                      
 [25] doParallel_1.0.10                       DESeq_1.24.0                           
 [27] robustbase_0.92-7                       knitr_1.15.2                           
 [29] geneplotter_1.50.0                      jsonlite_1.2                           
 [31] Rsamtools_1.24.0                        annotate_1.50.1                        
 [33] cluster_2.0.5                           kernlab_0.9-25                         
 [35] R.oo_1.21.0                             supraHex_1.10.0                        
 [37] graph_1.50.0                            readr_1.0.0                            
 [39] httr_1.2.1                              assertthat_0.1                         
 [41] Matrix_1.2-8                            lazyeval_0.2.0                         
 [43] TxDb.Hsapiens.UCSC.hg19.knownGene_3.2.2 limma_3.28.21                          
 [45] tools_3.3.2                             igraph_1.0.1                           
 [47] gtable_0.2.0                            affy_1.50.0                            
 [49] dplyr_0.5.0                             ggthemes_3.3.0                         
 [51] ShortRead_1.30.0                        Rcpp_0.12.9                            
 [53] Biobase_2.32.0                          trimcluster_0.1-2                      
 [55] Biostrings_2.40.2                       gdata_2.17.0                           
 [57] ape_4.1                                 preprocessCore_1.34.0                  
 [59] nlme_3.1-131                            rtracklayer_1.32.2                     
 [61] iterators_1.0.8                         fpc_2.1-10                             
 [63] stringr_1.2.0                           rvest_0.3.2                            
 [65] gtools_3.5.0                            XML_3.98-1.5                           
 [67] dendextend_1.4.0                        edgeR_3.14.0                           
 [69] DEoptimR_1.0-8                          zlibbioc_1.18.0                        
 [71] MASS_7.3-45                             zoo_1.7-14                             
 [73] scales_0.4.1                            aroma.light_3.2.0                      
 [75] parallel_3.3.2                          SummarizedExperiment_1.2.3             
 [77] sandwich_2.3-4                          RColorBrewer_1.1-2                     
 [79] ComplexHeatmap_1.13.1                   memoise_1.0.0                          
 [81] gridExtra_2.2.1                         ggplot2_2.2.1                          
 [83] downloader_0.4                          biomaRt_2.28.0                         
 [85] reshape_0.8.6                           latticeExtra_0.6-28                    
 [87] stringi_1.1.2                           RSQLite_1.1-2                          
 [89] highr_0.6                               genefilter_1.54.2                      
 [91] S4Vectors_0.10.3                        foreach_1.4.3                          
 [93] caTools_1.17.1                          GenomicFeatures_1.24.5                 
 [95] BiocGenerics_0.18.0                     BiocParallel_1.6.6                     
 [97] shape_1.4.2                             GenomeInfoDb_1.8.7                     
 [99] prabclus_2.2-6                          matrixStats_0.51.0                     
[101] bitops_1.0-6                            dnet_1.0.10                            
[103] lattice_0.20-34                         GenomicAlignments_1.8.4                
[105] GGally_1.3.0                            plyr_1.8.4                             
[107] magrittr_1.5                            R6_2.2.0                               
[109] gplots_3.0.1                            IRanges_2.6.1                          
[111] multcomp_1.4-6                          DBI_0.5-1                              
[113] whisker_0.3-2                           survival_2.40-1                        
[115] RCurl_1.95-4.8                          nnet_7.3-12                            
[117] tibble_1.2                              EDASeq_2.6.2                           
[119] KernSmooth_2.23-15                      viridis_0.3.4                          
[121] GetoptLong_0.1.5                        grid_3.3.2                             
[123] data.table_1.10.4                       Rgraphviz_2.16.0                       
[125] ConsensusClusterPlus_1.36.0             digest_0.6.12                          
[127] diptest_0.75-7                          xtable_1.8-2                           
[129] R.utils_2.5.0                           stats4_3.3.2                           
[131] munsell_0.4.3 
ADD COMMENTlink modified 15 months ago by tiagochst130 • written 16 months ago by d r150
gravatar for tiagochst
15 months ago by
Brazil - University of São Paulo/ Los Angeles - Cedars-Sinai Medical Center
tiagochst130 wrote:


GDC updated the MAF files available and there path. As the version of the package is old,  you will need to update TCGAbiolinks.

The new documentation can be found at:

Best regards,


ADD COMMENTlink written 15 months ago by tiagochst130
Please log in to add an answer.


Use of this site constitutes acceptance of our User Agreement and Privacy Policy.
Powered by Biostar version 2.2.0
Traffic: 140 users visited in the last hour