Problem with using GDC_queryMaf()
1
0
Entering edit mode
d r ▴ 150
@d-r-5459
Last seen 6.8 years ago
Israel

Hello

I am trying to use the TCGAbiolinks package to extract mutation data for several types of tumors I am interested in.

I am using GDCquery_Maf, using exactly the syntax indicated in the help file:

acc.maf <- GDCquery_Maf("ACC")

However I then get the error:

Error in missing(tumor) : 'missing' can only be used for arguments

The maf file is actually written in my working directory, but for some reason is not imported into the R workspace. Also when I'm using save.csv=TRUE, no csv file is created.

I have tried this with several tumor types, and always got the same error.

Any idea what may be causing this?

Thanks in advacne

Dolev Rahat

 

> sessionInfo()
R version 3.3.2 (2016-10-31)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 14.04.5 LTS

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C               LC_TIME=en_US.UTF-8       
 [4] LC_COLLATE=en_US.UTF-8     LC_MONETARY=he_IL.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=he_IL.UTF-8       LC_NAME=C                  LC_ADDRESS=C              
[10] LC_TELEPHONE=C             LC_MEASUREMENT=he_IL.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
[1] TCGA2STAT_1.2        BiocInstaller_1.22.3 TCGAbiolinks_2.0.13  curl_2.3            

loaded via a namespace (and not attached):
  [1] TH.data_1.0-8                           colorspace_1.3-2                       
  [3] rjson_0.2.15                            hwriter_1.3.2                          
  [5] class_7.3-14                            modeltools_0.2-21                      
  [7] mclust_5.2.2                            circlize_0.3.9                         
  [9] XVector_0.12.1                          GenomicRanges_1.24.3                   
 [11] GlobalOptions_0.0.10                    parmigene_1.0.2                        
 [13] matlab_1.0.2                            hexbin_1.27.1                          
 [15] affyio_1.42.0                           ggrepel_0.6.5                          
 [17] flexmix_2.3-13                          AnnotationDbi_1.34.4                   
 [19] mvtnorm_1.0-5                           xml2_1.1.1                             
 [21] coin_1.1-3                              codetools_0.2-15                       
 [23] splines_3.3.2                           R.methodsS3_1.7.1                      
 [25] doParallel_1.0.10                       DESeq_1.24.0                           
 [27] robustbase_0.92-7                       knitr_1.15.2                           
 [29] geneplotter_1.50.0                      jsonlite_1.2                           
 [31] Rsamtools_1.24.0                        annotate_1.50.1                        
 [33] cluster_2.0.5                           kernlab_0.9-25                         
 [35] R.oo_1.21.0                             supraHex_1.10.0                        
 [37] graph_1.50.0                            readr_1.0.0                            
 [39] httr_1.2.1                              assertthat_0.1                         
 [41] Matrix_1.2-8                            lazyeval_0.2.0                         
 [43] TxDb.Hsapiens.UCSC.hg19.knownGene_3.2.2 limma_3.28.21                          
 [45] tools_3.3.2                             igraph_1.0.1                           
 [47] gtable_0.2.0                            affy_1.50.0                            
 [49] dplyr_0.5.0                             ggthemes_3.3.0                         
 [51] ShortRead_1.30.0                        Rcpp_0.12.9                            
 [53] Biobase_2.32.0                          trimcluster_0.1-2                      
 [55] Biostrings_2.40.2                       gdata_2.17.0                           
 [57] ape_4.1                                 preprocessCore_1.34.0                  
 [59] nlme_3.1-131                            rtracklayer_1.32.2                     
 [61] iterators_1.0.8                         fpc_2.1-10                             
 [63] stringr_1.2.0                           rvest_0.3.2                            
 [65] gtools_3.5.0                            XML_3.98-1.5                           
 [67] dendextend_1.4.0                        edgeR_3.14.0                           
 [69] DEoptimR_1.0-8                          zlibbioc_1.18.0                        
 [71] MASS_7.3-45                             zoo_1.7-14                             
 [73] scales_0.4.1                            aroma.light_3.2.0                      
 [75] parallel_3.3.2                          SummarizedExperiment_1.2.3             
 [77] sandwich_2.3-4                          RColorBrewer_1.1-2                     
 [79] ComplexHeatmap_1.13.1                   memoise_1.0.0                          
 [81] gridExtra_2.2.1                         ggplot2_2.2.1                          
 [83] downloader_0.4                          biomaRt_2.28.0                         
 [85] reshape_0.8.6                           latticeExtra_0.6-28                    
 [87] stringi_1.1.2                           RSQLite_1.1-2                          
 [89] highr_0.6                               genefilter_1.54.2                      
 [91] S4Vectors_0.10.3                        foreach_1.4.3                          
 [93] caTools_1.17.1                          GenomicFeatures_1.24.5                 
 [95] BiocGenerics_0.18.0                     BiocParallel_1.6.6                     
 [97] shape_1.4.2                             GenomeInfoDb_1.8.7                     
 [99] prabclus_2.2-6                          matrixStats_0.51.0                     
[101] bitops_1.0-6                            dnet_1.0.10                            
[103] lattice_0.20-34                         GenomicAlignments_1.8.4                
[105] GGally_1.3.0                            plyr_1.8.4                             
[107] magrittr_1.5                            R6_2.2.0                               
[109] gplots_3.0.1                            IRanges_2.6.1                          
[111] multcomp_1.4-6                          DBI_0.5-1                              
[113] whisker_0.3-2                           survival_2.40-1                        
[115] RCurl_1.95-4.8                          nnet_7.3-12                            
[117] tibble_1.2                              EDASeq_2.6.2                           
[119] KernSmooth_2.23-15                      viridis_0.3.4                          
[121] GetoptLong_0.1.5                        grid_3.3.2                             
[123] data.table_1.10.4                       Rgraphviz_2.16.0                       
[125] ConsensusClusterPlus_1.36.0             digest_0.6.12                          
[127] diptest_0.75-7                          xtable_1.8-2                           
[129] R.utils_2.5.0                           stats4_3.3.2                           
[131] munsell_0.4.3 
tcgabiolinks maf mutations • 1.1k views
ADD COMMENT
1
Entering edit mode
@tiago-chedraoui-silva-8877
Last seen 4.3 years ago
Brazil - University of São Paulo/ Los A…

Hi,

GDC updated the MAF files available and there path. As the version of the package is old,  you will need to update TCGAbiolinks.

The new documentation can be found at:

https://bioconductor.org/packages/release/bioc/vignettes/TCGAbiolinks/inst/doc/mutation.html

Best regards,

Tiago

ADD COMMENT

Login before adding your answer.

Traffic: 1061 users visited in the last hour
Help About
FAQ
Access RSS
API
Stats

Use of this site constitutes acceptance of our User Agreement and Privacy Policy.

Powered by the version 2.3.6