Entering edit mode
Kun Zhang
▴
10
@kun-zhang-3219
Last seen 10.5 years ago
Dear All,
Now I'm using limma to do microarray analysis.
In limma User's Guide (ver. 22 October 2008), Chapter 9, there is only
one case for "Separate Channel Analysis of Two-Color Data".
My question is, if there is duplication spots within each array (e.g.
3 spots/gene) , how to use duplicateCorrelation() to correct within-
array replicate spots in this case?
Best Wishes,
Kunlin Zhang
I also copy the information of this case:
FileName Cy3 Cy5
File1 wt.young wt.old
File2 wt.old wt.young
File3 mu.young mu.old
File4 mu.old mu.young
> MA <- normalizeBetweenArrays(MA, method="Aquantile")
> targets2 <- targetsA2C(targets)
> targets2
channel.col FileName Target
File1.1 1 File1 wt.young
File1.2 2 File1 wt.old
File2.1 1 File2 wt.old
File2.2 2 File2 wt.young
File3.1 1 File3 mu.young
File3.2 2 File3 mu.old
File4.1 1 File4 mu.old
File4.2 2 File4 mu.young
The following code produces a design matrix with eight rows and four
columns:
> u <- unique(targets2$Target)
> f <- factor(targets2$Target, levels=u)
> design <- model.matrix(~0+f)
> colnames(design) <- u
Inference proceeds as for within-array replicate spots except that the
correlation to be estimated
is that between the two channels for the same spot rather than between
replicate
spots.
> corfit <- intraspotCorrelation(MA, design)
> fit <- lmscFit(MA, design, correlation=corfit$consensus)
Subsequent steps proceed as for log-ratio analyses. For example if we
want to compare wildtype
young to mutant young animals, we could extract this contrast by
> cont.matrix <- makeContrasts("mu.young-wt.young",levels=design)
> fit2 <- contrasts.fit(fit, cont.matrix)
> fit2 <- eBayes(fit2)
> topTable(fit2, adjust="BH")
_________________________________________________________________
s. It's easy!
aspx&mkt=en-us
[[alternative HTML version deleted]]