I have been a regular user of the wateRmelon package since its inception, and have encountered new errors with wateRmelon_1.18.0. I was wondering if anyone has run into the same issue. Normalization using dasen() on the new Illumina EPIC chips (aka 850K) gives the following error:
dasen(melon.LumiSet) Error in (function (od, vd) : object and replacement value dimnames differ
This is a methyLumiSet object:
Object Information:
MethyLumiSet (storageMode: lockedEnvironment)
assayData: 866895 features, 1919 samples
element names: betas, methylated, pvals, unmethylated
protocolData: none
phenoData
sampleNames: 11 23 ... 1050 (1919 total)
varLabels: PlateNumber Position ... barcodes (42 total)
varMetadata: labelDescription
featureData
featureNames: cg00000029 cg00000103 ... rs9839873 (866895 total)
fvarLabels: Probe_ID DESIGN COLOR_CHANNEL
fvarMetadata: labelDescription
experimentData: use 'experimentData(object)'
Annotation: IlluminaHumanMethylationEpic
Major Operation History:
submitted finished
1 2017-01-08 20:00:02 2017-01-08 21:14:54
2 2017-01-08 20:00:02 2017-01-08 21:14:54
3 2017-01-08 21:15:06 2017-01-08 21:22:30
command
1 NChannelSetToMethyLumiSet2(NChannelSet = dats, parallel = parallel,
2 n = n, oob = oob)
3 Subset of 866895 features.
There have been a number of changes to key functions in methylation-related packages (e.g., ChAMP) to deal with the EPIC chip, so I thought that was the most likely contributing factor. So I went back to some 450K data from a few months ago that had been normalized using wateRmelon's dasen() without any previous issue, and I ran the same call on a different dataset set (same object name here though).
dasen(melon.LumiSet) Error in rbind(deparse.level, ...) : numbers of columns of arguments do not match
Below is traceback() result on the previous object (the 850K data), after subsetting it a bit so what is returned is more readable (otherwise it just fills the output with the betas):
traceback()
11: stop("object and replacement value dimnames differ")
10: (function (od, vd)
{
if (is.null(vd))
od <- seq_along(od)
else if (!setequal(od, vd))
stop("object and replacement value dimnames differ")
od
})(dots[[1L]][[2L]], dots[[2L]][[2L]])
9: mapply(FUN = f, ..., SIMPLIFY = FALSE)
8: Map(function(od, vd) {
if (is.null(vd))
od <- seq_along(od)
else if (!setequal(od, vd))
stop("object and replacement value dimnames differ")
od
}, dimnames(obj), dimnames(value))
7: .validate_assayDataElementReplace(obj, value)
6: assayDataElementReplace(object, "betas", value)
5: `betas<-`(`*tmp*`, value = c(0.765455893254262, 0.346322423811164,
0.79320412999323, 0.84092723540146, 0.84896966594138, 0.834306200303351,
0.901385362090579, 0.884037322605878, 0.60005993815556, 0.787555761543364,
0.900060127125923, 0.1115827362559, 0.432910551304066, 0.806950808334054,
0.603133083995342, 0.855765117635621, 0.864837304162418, 0.78520105886802,
1.14472340361489, 0.438024138169323, 0.904903918466845, 0.856004612884625,
0.872655767543147, 1.34053973279993, 0.294631710362047, 0.806198267564966,
0.741435562805873, 0.24167156574564, 0.848020263964805, 0.596505864455023,
0.838222781251156, 0.830319888734353, 0.884913868105098, 0.359941799245014,
0.961472543633483, 0.770877200155365, 0.777847152847153, 0.350500377170557,
0.842492462311558, 0.84092723540146, 0.831593420583592, 0.841105430183357,
0.881447587354409, 0.884327469911387, 0.60005993815556, 0.751856705985146,
0.874604430379747, 0.1115827362559, 0.421208057191832, 0.84480122324159,
0.610154944639215, 0.889023552700683, 0.781185636249664, 0.837959643552187,
1.14472340361489, 0.359941799245014, 0.905788423153693, 0.865380176353816,
0.887914384320679, 1.26850888264193, 0.327938531960111, 0.788886796006781,
0.762795732178754, 0.231658890102254, 0.88911126995473, 0.414400682843556,
0.845163937483681, 0.822439379369493, 0.878624255514104, 0.393743740060147,
0.961472543633483, 0.789270988132365, 0.743733794295592, 0.34234574114154,
0.83549565436453, 0.84092723540146, 0.824683304972585, 0.810903884847547,
0.892335766423358, 0.907196352979486, 0.60005993815556, 0.767401749414808,
0.88911126995473, 0.1115827362559, 0.381207993361825, 0.806515825094553,
0.904546732075583, 0.87263624109378, 0.788774573733275, 0.811194653299916,
1.14472340361489, 0.421208057191832, 0.914182111200645, 0.893555153017447,
0.9039458622315, 1.26850888264193, 0.284943181818182, 0.813448054848797,
0.697977988226261, 0.24167156574564, 0.874163994502978, 0.531670084301663,
0.841304430936269, 0.822439379369493, 0.886090748230536, 0.387614481944666,
0.800086418050182, 0.770877200155365))
4: `betas<-`(`*tmp*`, value = c(0.765455893254262, 0.346322423811164,
0.79320412999323, 0.84092723540146, 0.84896966594138, 0.834306200303351,
0.901385362090579, 0.884037322605878, 0.60005993815556, 0.787555761543364,
0.900060127125923, 0.1115827362559, 0.432910551304066, 0.806950808334054,
0.603133083995342, 0.855765117635621, 0.864837304162418, 0.78520105886802,
1.14472340361489, 0.438024138169323, 0.904903918466845, 0.856004612884625,
0.872655767543147, 1.34053973279993, 0.294631710362047, 0.806198267564966,
0.741435562805873, 0.24167156574564, 0.848020263964805, 0.596505864455023,
0.838222781251156, 0.830319888734353, 0.884913868105098, 0.359941799245014,
0.961472543633483, 0.770877200155365, 0.777847152847153, 0.350500377170557,
0.842492462311558, 0.84092723540146, 0.831593420583592, 0.841105430183357,
0.881447587354409, 0.884327469911387, 0.60005993815556, 0.751856705985146,
0.874604430379747, 0.1115827362559, 0.421208057191832, 0.84480122324159,
0.610154944639215, 0.889023552700683, 0.781185636249664, 0.837959643552187,
1.14472340361489, 0.359941799245014, 0.905788423153693, 0.865380176353816,
0.887914384320679, 1.26850888264193, 0.327938531960111, 0.788886796006781,
0.762795732178754, 0.231658890102254, 0.88911126995473, 0.414400682843556,
0.845163937483681, 0.822439379369493, 0.878624255514104, 0.393743740060147,
0.961472543633483, 0.789270988132365, 0.743733794295592, 0.34234574114154,
0.83549565436453, 0.84092723540146, 0.824683304972585, 0.810903884847547,
0.892335766423358, 0.907196352979486, 0.60005993815556, 0.767401749414808,
0.88911126995473, 0.1115827362559, 0.381207993361825, 0.806515825094553,
0.904546732075583, 0.87263624109378, 0.788774573733275, 0.811194653299916,
1.14472340361489, 0.421208057191832, 0.914182111200645, 0.893555153017447,
0.9039458622315, 1.26850888264193, 0.284943181818182, 0.813448054848797,
0.697977988226261, 0.24167156574564, 0.874163994502978, 0.531670084301663,
0.841304430936269, 0.822439379369493, 0.886090748230536, 0.387614481944666,
0.800086418050182, 0.770877200155365))
3: .local(mns, fudge, ...)
2: dasen(melon.LumiSet[35:70, 1:3])
1: dasen(melon.LumiSet[35:70, 1:3])
So one thing that stands out to me is that some betas (highlighted) have values outside [0,1]. Now the normalization quit due to error, so maybe these betas have not finished being processed.
Any thoughts?
BiocInstaller::biocValid()
* sessionInfo()
R version 3.3.2 (2016-10-31)
Platform: x86_64-redhat-linux-gnu (64-bit)
Running under: CentOS Linux 7 (Core)
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=en_US.UTF-8 LC_NAME=en_US.UTF-8
[9] LC_ADDRESS=en_US.UTF-8 LC_TELEPHONE=en_US.UTF-8
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=en_US.UTF-8
attached base packages:
[1] splines stats4 parallel stats graphics grDevices utils
[8] datasets methods base
other attached packages:
[1] IlluminaHumanMethylationEPICanno.ilm10b2.hg19_0.6.0
[2] stringr_1.1.0
[3] xlsx_0.5.7
[4] xlsxjars_0.6.1
[5] rJava_0.9-8
[6] wateRmelon_1.18.0
[7] illuminaio_0.16.0
[8] IlluminaHumanMethylation450kanno.ilmn12.hg19_0.6.0
[9] ROC_1.50.0
[10] lumi_2.26.3
[11] methylumi_2.20.0
[12] FDb.InfiniumMethylation.hg19_2.2.0
[13] TxDb.Hsapiens.UCSC.hg19.knownGene_3.2.2
[14] GenomicFeatures_1.26.2
[15] matrixStats_0.51.0
[16] ggplot2_2.2.1
[17] reshape2_1.4.2
[18] scales_0.4.1
[19] ChAMP_2.4.1
[20] IlluminaHumanMethylationEPICmanifest_0.3.0
[21] Illumina450ProbeVariants.db_1.10.0
[22] DMRcate_1.10.2
[23] DMRcatedata_1.10.1
[24] DSS_2.14.0
[25] bsseq_1.10.0
[26] FEM_3.2.0
[27] graph_1.52.0
[28] org.Hs.eg.db_3.4.0
[29] impute_1.48.0
[30] igraph_1.0.1
[31] corrplot_0.77
[32] marray_1.52.0
[33] limma_3.30.7
[34] Matrix_1.2-7.1
[35] AnnotationDbi_1.36.0
[36] ChAMPdata_2.2.0
[37] minfi_1.20.2
[38] bumphunter_1.14.0
[39] locfit_1.5-9.1
[40] iterators_1.0.8
[41] foreach_1.4.3
[42] Biostrings_2.42.1
[43] XVector_0.14.0
[44] SummarizedExperiment_1.4.0
[45] GenomicRanges_1.26.2
[46] GenomeInfoDb_1.10.2
[47] IRanges_2.8.1
[48] S4Vectors_0.12.1
[49] Biobase_2.34.0
[50] BiocGenerics_0.20.0
[51] BiocInstaller_1.24.0
loaded via a namespace (and not attached):
[1] R.utils_2.5.0
[2] RSQLite_1.1-1
[3] htmlwidgets_0.8
[4] grid_3.3.2
[5] trimcluster_0.1-2
[6] BiocParallel_1.8.1
[7] munsell_0.4.3
[8] codetools_0.2-15
[9] preprocessCore_1.36.0
[10] nleqslv_3.0.3
[11] statmod_1.4.27
[12] miniUI_0.1.1
[13] colorspace_1.3-2
[14] fastICA_1.2-0
[15] knitr_1.15.1
[16] robustbase_0.92-7
[17] isva_1.8
[18] biovizBase_1.22.0
[19] diptest_0.75-7
[20] R6_2.2.0
[21] doParallel_1.0.10
[22] flexmix_2.3-13
[23] bitops_1.0-6
[24] reshape_0.8.6
[25] assertthat_0.1
[26] nnet_7.3-12
[27] gtable_0.2.0
[28] affy_1.52.0
[29] sva_3.22.0
[30] ensembldb_1.6.2
[31] genefilter_1.56.0
[32] rtracklayer_1.34.1
[33] lazyeval_0.2.0
[34] acepack_1.4.1
[35] GEOquery_2.40.0
[36] dichromat_2.0-0
[37] checkmate_1.8.2
[38] yaml_2.1.14
[39] backports_1.0.4
[40] httpuv_1.3.3
[41] qvalue_2.6.0
[42] Hmisc_4.0-2
[43] tools_3.3.2
[44] nor1mix_1.2-2
[45] affyio_1.44.0
[46] RColorBrewer_1.1-2
[47] DNAcopy_1.48.0
[48] siggenes_1.48.0
[49] Rcpp_0.12.8
[50] plyr_1.8.4
[51] base64enc_0.1-3
[52] zlibbioc_1.20.0
[53] purrr_0.2.2
[54] RCurl_1.95-4.8
[55] BiasedUrn_1.07
[56] rpart_4.1-10
[57] openssl_0.9.6
[58] cluster_2.0.5
[59] magrittr_1.5
[60] data.table_1.10.0
[61] colourpicker_0.3
[62] mvtnorm_1.0-5
[63] whisker_0.3-2
[64] missMethyl_1.8.0
[65] mime_0.5
[66] xtable_1.8-2
[67] RPMM_1.20
[68] XML_3.98-1.5
[69] mclust_5.2.1
[70] gridExtra_2.2.1
[71] biomaRt_2.30.0
[72] tibble_1.2
[73] KernSmooth_2.23-15
[74] R.oo_1.21.0
[75] htmltools_0.3.5
[76] mgcv_1.8-15
[77] Formula_1.2-1
[78] tidyr_0.6.0
[79] DBI_0.5-1
[80] MASS_7.3-45
[81] fpc_2.1-10
[82] permute_0.9-4
[83] quadprog_1.5-5
[84] R.methodsS3_1.7.1
[85] Gviz_1.18.1
[86] RefFreeEWAS_2.0
[87] GenomicAlignments_1.10.0
[88] registry_0.3
[89] IlluminaHumanMethylation450kmanifest_0.4.0
[90] foreign_0.8-67
[91] plotly_4.5.6.9000
[92] annotate_1.52.1
[93] rngtools_1.2.4
[94] pkgmaker_0.22
[95] multtest_2.30.0
[96] beanplot_1.2
[97] ruv_0.9.6
[98] doRNG_1.6
[99] VariantAnnotation_1.20.2
[100] digest_0.6.11
[101] base64_2.0
[102] htmlTable_1.8
[103] dendextend_1.3.0
[104] kernlab_0.9-25
[105] shiny_0.14.2
[106] Rsamtools_1.26.1
[107] gtools_3.5.0
[108] modeltools_0.2-21
[109] nlme_3.1-128
[110] jsonlite_1.2
[111] viridisLite_0.1.3
[112] BSgenome_1.42.0
[113] lattice_0.20-34
[114] httr_1.2.1
[115] DEoptimR_1.0-8
[116] survival_2.39-5
[117] GO.db_3.4.0
[118] interactiveDisplayBase_1.12.0
[119] shinythemes_1.1.1
[120] prabclus_2.2-6
[121] class_7.3-14
[122] stringi_1.1.2
[123] AnnotationHub_2.6.4
[124] latticeExtra_0.6-28
[125] memoise_1.0.0
[126] dplyr_0.5.0
* Out-of-date packages
Package LibPath Installed Built ReposVer
bold "bold" "/home/share/R/library" "0.3.5" "3.3.1" "0.4.0"
gdsfmt "gdsfmt" "/home/share/R/library" "1.10.0" "3.3.1" "1.10.1"
rgl "rgl" "/home/share/R/library" "0.96.0" "3.3.1" "0.97.0"
RSQLite "RSQLite" "/home/share/R/library" "1.1-1" "3.3.1" "1.1-2"
tidyr "tidyr" "/home/share/R/library" "0.6.0" "3.3.1" "0.6.1"
xml2 "xml2" "/home/share/R/library" "1.0.0" "3.3.1" "1.1.0"
Repository
bold "https://cran.rstudio.com/src/contrib"
gdsfmt "https://bioconductor.org/packages/3.4/bioc/src/contrib"
rgl "https://cran.rstudio.com/src/contrib"
RSQLite "https://cran.rstudio.com/src/contrib"
tidyr "https://cran.rstudio.com/src/contrib"
xml2 "https://cran.rstudio.com/src/contrib"
update with biocLite()
* Packages too new for Bioconductor version '3.4'
Version LibPath
plotly "4.5.6.9000" "/home/share/R/library"
readxl "0.1.1.9000" "/home/share/R/library"
downgrade with biocLite(c("plotly", "readxl"))
Error: 6 package(s) out of date; 2 package(s) too new

Do you have any NAs in your rownames or colnames?
I have created the error by:
Or
My only other suggestion would be to construct a new methylumiset object your data and the normalised matrices. While I look into if BioBase has changed anything or package that imports methylumi changes its behaviour.
aDat <- assayDataNew(betas = norm$beta, methylated = norm$methylated, unmethylated = norm$unmethylated, pvals = pvals(melon.LumiSet)) x.lumi <- new('MethyLumiSet', assayData = aDat) pData(x.lumi) <- pData(melon.LumiSet) fData(x.lumi) <- fData(melon.LumiSet)