Hello,
I am attempting to re-run a script to find differentially expressed genes using DESeq2 that ran correctly two days ago. Since then, I updated R from version 3.3.2 to version 3.3.3. When attempting to call the DESeq function today, I get the following error:
Error in .Primitive("c")(<S4 object of class "GRangesList">, <S4 object of class "GRangesList">, : could not find symbol "recursive" in environment of the generic function
I have updated the GenomicRanges package, but this has not fixed the problem.
Does anybody know what the problem might be? Should I revert to version 3.3.2 of R for the time being?
Thanks!
Erin
I've pasted my code below.
################################################################### samples = read.csv("samples.csv",header=TRUE) #remove libraries that have fewer than 750,000 reads samples<-samples[samples$libsize >= 750000, ] #start edgeR, which you will use to make the count matrix library("edgeR") #proceed to read in count data from .count files, filter counts counts = readDGE(samples$countf)$counts noint = rownames(counts) %in% c("__no_feature","__ambiguous","__too_low_aQual", "__not_aligned","__alignment_not_unique") cpms = cpm(counts) keep = rowSums(cpms >3) >=2 & !noint counts = counts[keep,] colnames(counts) = samples$shortname #attach the column data to from the sample sheet to the variable coldata coldata = with(samples,data.frame(shortname = I(shortname), condition = condition)) #attach the count data to the variable countdata countdata = counts #start DESeq2 library("DESeq2") #construct your DESeq2 data set, making sure to specify the design matrix here dds <- DESeqDataSetFromMatrix(countData = countdata, colData = coldata, design = ~ condition) #run DESeq2 on the dataset dds <- DESeq(dds, parallel=TRUE)
###########################################
My sample sheet is as follows:
LibraryName | LibraryLayout | SamplePrep | fastq1 | shortname | condition | countf | libsize |
L1 | single | KAPA | L1.fastq.gz | L1 | control | counts/L1.count | 799470 |
L2 | single | KAPA | L2.fastq.gz | L2 | control | counts/L2.count | 2392311 |
L3 | single | KAPA | L3.fastq.gz | L3 | control | counts/L3.count | 2210542 |
N1 | single | KAPA | N1.fastq.gz | N1 | NaNO2 | counts/N1.count | 2899109 |
N2 | single | KAPA | N2.fastq.gz | N2 | NaNO2 | counts/N2.count | 1430 |
N3 | single | KAPA | N3.fastq.gz | N3 | NaNO2 | counts/N3.count | 3846171 |
E1 | single | KAPA | E1.fastq.gz | E1 | EDTA | counts/E1.count | 1657224 |
E2 | single | KAPA | E2.fastq.gz | E2 | EDTA | counts/E2.count | 751472 |
E3 | single | KAPA | E3.fastq.gz | E3 | EDTA | counts/E3.count | 1820830 |
C1 | single | KAPA | C1.fastq.gz | C1 | NaNO2.EDTA | counts/C1.count | 3385405 |
C2 | single | KAPA | C2.fastq.gz | C2 | NaNO2.EDTA | counts/C2.count | 883168 |
C3 | single | KAPA | C3.fastq.gz | C3 | NaNO2.EDTA | counts/C3.count | 4245484 |
#######################################################
sessionInfo() R version 3.3.3 (2017-03-06) Platform: x86_64-pc-linux-gnu (64-bit) Running under: Ubuntu 16.04.2 LTS locale: [1] LC_CTYPE=en_CA.UTF-8 LC_NUMERIC=C LC_TIME=en_CA.UTF-8 [4] LC_COLLATE=en_CA.UTF-8 LC_MONETARY=en_CA.UTF-8 LC_MESSAGES=en_CA.UTF-8 [7] LC_PAPER=en_CA.UTF-8 LC_NAME=C LC_ADDRESS=C [10] LC_TELEPHONE=C LC_MEASUREMENT=en_CA.UTF-8 LC_IDENTIFICATION=C attached base packages: [1] parallel stats4 stats graphics grDevices utils datasets methods base other attached packages: [1] ggplot2_2.2.1 gplots_3.0.1 RColorBrewer_1.1-2 [4] DESeq2_1.14.1 SummarizedExperiment_1.4.0 Biobase_2.34.0 [7] GenomicRanges_1.26.3 GenomeInfoDb_1.10.3 IRanges_2.8.1 [10] S4Vectors_0.12.1 BiocGenerics_0.20.0 edgeR_3.16.5 [13] limma_3.30.12 loaded via a namespace (and not attached): [1] genefilter_1.56.0 gtools_3.5.0 locfit_1.5-9.1 splines_3.3.3 [5] lattice_0.20-34 colorspace_1.3-2 htmltools_0.3.5 base64enc_0.1-3 [9] survival_2.40-1 XML_3.98-1.5 foreign_0.8-67 DBI_0.6 [13] BiocParallel_1.8.1 plyr_1.8.4 stringr_1.2.0 zlibbioc_1.20.0 [17] munsell_0.4.3 gtable_0.2.0 caTools_1.17.1 htmlwidgets_0.8 [21] memoise_1.0.0 labeling_0.3 latticeExtra_0.6-28 knitr_1.15.1 [25] geneplotter_1.52.0 AnnotationDbi_1.36.2 htmlTable_1.9 Rcpp_0.12.9 [29] KernSmooth_2.23-15 acepack_1.4.1 xtable_1.8-2 scales_0.4.1 [33] backports_1.0.5 checkmate_1.8.2 gdata_2.17.0 Hmisc_4.0-2 [37] annotate_1.52.1 XVector_0.14.0 gridExtra_2.2.1 digest_0.6.12 [41] stringi_1.1.2 grid_3.3.3 tools_3.3.3 bitops_1.0-6 [45] magrittr_1.5 lazyeval_0.2.0 RCurl_1.95-4.8 tibble_1.2 [49] RSQLite_1.1-2 Formula_1.2-1 cluster_2.0.5 Matrix_1.2-8 [53] data.table_1.10.4 assertthat_0.1 rpart_4.1-10 nnet_7.3-12