If we look at the example of Deseq2 vignette on interaction terms:
https://bioconductor.org/packages/devel/bioc/vignettes/DESeq2/inst/doc/DESeq2.html#interactions Table sampleName fileName genotype condition group 1 AI_s1 A1_ATCACG_counts I A AI 2 AI_s2 A2_TGACCA_counts I A AI 3 AII_s1 A3_CAGATC_counts II A AII 4 AII_s2 A4_TAGCTT_counts II A AII 5 AIII_s1 B1_CGATGT_counts III A AIII 6 AIII_s2 B2_ACAGTG_counts III A AIII 7 BI_s1 B3_ACTTGA_counts I B BI 8 BI_s2 B4_GGCTAC_counts I B BI 9 BII_s1 C1_TTAGGC_counts II B BII 10 BII_s2 C2_GCCAAT_counts II B BII 11 BIII_s1 C3_GATCAG_counts III B BIII 12 BIII_s2 C4_CTTGTA_counts III B BIII
and we do:
dds3 <- DESeqDataSetFromHTSeqCount(sampleTable = Table, design= ~ genotype + condition + genotype:condition)
dds3 <- dds3[rowSums(counts(dds3)) > 1, ]
ddsHTSeq3 <- DESeq(dds3)
resultsNames(ddsHTSeq3)
[1] "Intercept" "genotype_II_vs_I" "genotype_III_vs_I" "condition_B_vs_A" "genotypeII.conditionB" "genotypeIII.conditionB"
results(ddsHTSeq3, name="genotypeII.conditionB")
"genotypeII.conditionB" gives us the difference between the condition effect for a genotype II and the condition effect for the reference genotype I.
But what if we want to know the difference between the genotype effect for conditionB and the genotype effect for the reference condition A? What should we do?
P.S: this is a repost of https://www.biostars.org/p/353618/#356111
I’m out of the office for winter break, but will reply when I’m back.