fgsea stuck in an infinite loop in the middle of the run
0
0
Entering edit mode
Assa Yeroslaviz ★ 1.5k
@assa-yeroslaviz-1597
Last seen 3 days ago
Germany

I'm running fgsea on a single-cell data set with seven clusters.

markers_export0.2.res_0.2$cluster |> table()
    0    1    2    3    4    5    6 
 2318  713 1380 1228 2469 1938 3785 

In a for loop I'm trying to run the GSEA for each of them separately. It runs perfectly for clusters 0 and 1 but got stuck in cluster 2 for many hours. It can't be the number of cells, as cluster 0 is much bigger and done in seconds. It also doesn't matter which database I'm using. I troed msigDB C5 and H, both behaves similarly.

any ideas, what my problem is?

thanks

for (clust in 0:6) {
  genes<- markers_export0.2.res_0.2 %>%
  dplyr::filter(cluster == clust) %>%
  arrange(desc(p_val_adj)) %>% 
  dplyr::select(gene, p_val_adj)

  ranks<- deframe(genes)

  fgseaRes<- fgsea(fgsea_sets, stats = ranks,  maxSize = 200, nPermSimple = 10000, nproc = 1 )

  fgseaResTidy <- fgseaRes %>%
    as_tibble() %>%
    arrange(desc(NES))

  # only plot the top 20 pathways
  ggplot(fgseaResTidy %>% filter(padj < 0.008) %>% head(n= 20), aes(reorder(pathway, NES), NES)) +
    geom_col(aes(fill= NES < 7.5)) +
    coord_flip() +
    labs(x="Pathway", y="Normalized Enrichment Score",
         title="GO pathways NES from GSEA") + 
    theme_minimal()
}


sessionInfo( )
> sessionInfo()
R version 4.4.0 (2024-04-24)
Platform: x86_64-apple-darwin20
Running under: macOS Sonoma 14.6.1

Matrix products: default
BLAS:   /System/Library/Frameworks/Accelerate.framework/Versions/A/Frameworks/vecLib.framework/Versions/A/libBLAS.dylib 
LAPACK: /Library/Frameworks/R.framework/Versions/4.4-x86_64/Resources/lib/libRlapack.dylib;  LAPACK version 3.12.0

locale:
[1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8

time zone: Europe/Berlin
tzcode source: internal

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] msigdbr_7.5.1      fgsea_1.30.0       patchwork_1.2.0    UCell_2.8.0        corrplot_0.92      RColorBrewer_1.1-3
 [7] cowplot_1.1.3      clustree_0.5.1     ggraph_2.2.1       ggpubr_0.6.0       lubridate_1.9.3    forcats_1.0.0     
[13] stringr_1.5.1      dplyr_1.1.4        purrr_1.0.2        readr_2.1.5        tidyr_1.3.1        tibble_3.2.1      
[19] ggplot2_3.5.1      tidyverse_2.0.0    Seurat_5.1.0       SeuratObject_5.0.2 sp_2.1-4          

loaded via a namespace (and not attached):
  [1] RcppAnnoy_0.0.22            splines_4.4.0               later_1.3.2                 polyclip_1.10-6            
  [5] fastDummies_1.7.3           lifecycle_1.0.4             rstatix_0.7.2               globals_0.16.3             
  [9] lattice_0.22-6              MASS_7.3-60.2               backports_1.4.1             magrittr_2.0.3             
 [13] plotly_4.10.4               httpuv_1.6.15               sctransform_0.4.1           spam_2.10-0                
 [17] spatstat.sparse_3.0-3       reticulate_1.36.1           pbapply_1.7-2               zlibbioc_1.50.0            
 [21] abind_1.4-5                 Rtsne_0.17                  GenomicRanges_1.56.0        BiocGenerics_0.50.0        
 [25] tweenr_2.0.3                GenomeInfoDbData_1.2.12     IRanges_2.38.0              S4Vectors_0.42.0           
 [29] ggrepel_0.9.5               irlba_2.3.5.1               listenv_0.9.1               spatstat.utils_3.1-0       
 [33] goftest_1.2-3               RSpectra_0.16-1             spatstat.random_3.2-3       fitdistrplus_1.1-11        
 [37] parallelly_1.37.1           DelayedArray_0.30.1         leiden_0.4.3.1              codetools_0.2-20           
 [41] ggforce_0.4.2               tidyselect_1.2.1            UCSC.utils_1.0.0            farver_2.1.2               
 [45] viridis_0.6.5               matrixStats_1.3.0           stats4_4.4.0                spatstat.explore_3.2-7     
 [49] jsonlite_1.8.8              BiocNeighbors_1.22.0        tidygraph_1.3.1             progressr_0.14.0           
 [53] ggridges_0.5.6              survival_3.6-4              tools_4.4.0                 ica_1.0-3                  
 [57] Rcpp_1.0.12                 glue_1.7.0                  SparseArray_1.4.3           gridExtra_2.3              
 [61] xfun_0.44                   MatrixGenerics_1.16.0       GenomeInfoDb_1.40.0         withr_3.0.0                
 [65] fastmap_1.2.0               fansi_1.0.6                 digest_0.6.35               timechange_0.3.0           
 [69] R6_2.5.1                    mime_0.12                   colorspace_2.1-0            scattermore_1.2            
 [73] tensor_1.5                  spatstat.data_3.0-4         utf8_1.2.4                  generics_0.1.3             
 [77] data.table_1.15.4           S4Arrays_1.4.0              graphlayouts_1.1.1          httr_1.4.7                 
 [81] htmlwidgets_1.6.4           uwot_0.2.2                  pkgconfig_2.0.3             gtable_0.3.5               
 [85] lmtest_0.9-40               SingleCellExperiment_1.26.0 XVector_0.44.0              htmltools_0.5.8.1          
 [89] carData_3.0-5               dotCall64_1.1-1             Biobase_2.64.0              scales_1.3.0               
 [93] png_0.1-8                   knitr_1.46                  rstudioapi_0.16.0           tzdb_0.4.0                 
 [97] reshape2_1.4.4              nlme_3.1-164                zoo_1.8-12                  cachem_1.0.8               
[101] KernSmooth_2.23-22          parallel_4.4.0              miniUI_0.1.1.1              pillar_1.9.0               
[105] grid_4.4.0                  vctrs_0.6.5                 RANN_2.6.1                  promises_1.3.0             
[109] car_3.1-2                   xtable_1.8-4                cluster_2.1.6               cli_3.6.3                  
[113] compiler_4.4.0              crayon_1.5.2                rlang_1.1.4                 future.apply_1.11.2        
[117] ggsignif_0.6.4              plyr_1.8.9                  stringi_1.8.4               viridisLite_0.4.2          
[121] deldir_2.0-4                BiocParallel_1.38.0         babelgene_22.9              munsell_0.5.1              
[125] lazyeval_0.2.2              spatstat.geom_3.2-9         Matrix_1.7-0                RcppHNSW_0.6.0             
[129] hms_1.1.3                   future_1.33.2               shiny_1.8.1.1               SummarizedExperiment_1.34.0
[133] ROCR_1.0-11                 igraph_2.0.3                broom_1.0.5                 memoise_2.0.1              
[137] fastmatch_1.1-4
GSEABase fgsea msigdb GeneSetEnrichment • 748 views
ADD COMMENT
0
Entering edit mode

Try running it on cluster 2 without the for loop. It will tell you if the loop is the problem or not.

ADD REPLY
2
Entering edit mode

Thanks for the suggestion. AsI said, the loop runs for clusters 0 and 1 before it starts with 2. I have also tried cluster 2 without the loop and it still got stuck.

I have solved the problem using the suggestion from the maintainer on github

ADD REPLY

Login before adding your answer.

Traffic: 521 users visited in the last hour
Help About
FAQ
Access RSS
API
Stats

Use of this site constitutes acceptance of our User Agreement and Privacy Policy.

Powered by the version 2.3.6